Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 028103    DOI: 10.1088/1674-1056/25/2/028103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Nanodots and microwires of ZrO2 grown on LaAlO3 by photo-assisted metal-organic chemical vapor deposition

Feng Guo(郭峰), Xin-Sheng Wang(汪薪生), Shi-Wei Zhuang(庄仕伟), Guo-Xing Li(李国兴), Bao-Lin Zhang(张宝林), Pen-Chu Chou(周本初)
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Abstract  ZrO2 nanodots are successfully prepared on LaAlO3 (LAO) (100) substrates by photo-assisted metal-organic chemical vapor deposition (MOCVD). It is indicated that the sizes and densities of ZrO2 nanodots are controllable by modulating the growth temperature, oxygen partial pressure, and growth time. Meanwhile, the microwires are observed on the surfaces of substrates. It is found that there is an obvious competitive relationship between the nanodots and the microwires. In a growth temperature range from 500 ℃ to 660 ℃, the microwires turn longest and widest at 600 ℃, but in contrast, the nanodots grow into the smallest diameter at 600 ℃. This phenomenon could be illustrated by the energy barrier, decomposition rate of Zr(tmhd)4, and mobility of atoms. In addition, growth time or oxygen partial pressure also affects the competitive relationship between the nanodots and the microwires. With increasing oxygen partial pressure from 451 Pa to 752 Pa, the microwires gradually grow larger while the nanodots become smaller. To further achieve the controllable growth, the coarsening effect of ZrO2 is modified by varying the growth time, and the experimental results show that the coarsening effect of microwires is higher than that of nanodots by increasing the growth time to quickly minimize ZrO2 energy density.
Keywords:  ZrO2      photo-assisted MOCVD      nanodots      microwires  
Received:  04 August 2015      Revised:  07 October 2015      Accepted manuscript online: 
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51002063) and the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City, China (Grant No. 12ZX68).
Corresponding Authors:  Guo-Xing Li     E-mail:  liguoxing@jlu.edu.cn

Cite this article: 

Feng Guo(郭峰), Xin-Sheng Wang(汪薪生), Shi-Wei Zhuang(庄仕伟), Guo-Xing Li(李国兴), Bao-Lin Zhang(张宝林), Pen-Chu Chou(周本初) Nanodots and microwires of ZrO2 grown on LaAlO3 by photo-assisted metal-organic chemical vapor deposition 2016 Chin. Phys. B 25 028103

[1] Tao P, Li Y, Richard S and Linda S 2013 J. Appl. Polym. Sci. 130 3785
[2] Moutalbi N, Ouerghi A, Djurado E, Noudem J G and M'chirgui A 2011 Physica C 471 97
[3] Wang Y, Nie X A and Liu Z X 2015 J. Am. Oil Chem. Soc. 92 813
[4] Damyanovaa S, Centenob M A, Petrova L and Grangec P 2001 Spectrochim. Acta 57 2495
[5] Nozawa T, Sato S and Takahashi R 2009 Top. Catal. 52 609
[6] Behbahani F K, Ziaei P, Fakhroueian Z and Doragi N 2011 Monatsh. Chem. 142 901
[7] Li Y, Wang Y H and Xu B Q 2005 Chem. J. Chin. Univ. 26 1325
[8] Zhang W, Cui Y, Hu Z G, Yu W L, Sun J, Xu N, Ying Z F and Wu J D 2012 Thin Solid Films 520 6361
[9] Kim Y, Koo J, Han J W, Choi S, Jeon H and Park C G 2002 J. Appl. Phys. 92 5443
[10] Venkataraj S, Kappertz O, Weis H, Drese R, Jayavel R and Wuttig M 2002 J. Appl. Phys. 92 3599
[11] Kong X T, Zhou X L, Li S Y, Qiao L J, Liu H G, Wang W and Pan J Q 2015 Chin. Phys. Lett. 32 037301
[12] Ni Y Q, He Z Y, Zhong J, Yao Y, Yang F, Xiang P, Zhang B J and Liu Y 2013 Chin. Phys. B 22 088104
[13] Feng X J, Zhao C S, Li Z, Luo Y and Ma J 2015 Mater. Res. Bull. 70 354
[14] Yang X L, Zhang G Y, Fan G H and Xing H Y 2010 Acta Phys. Sin. 59 504 (in Chinese)
[15] Sun P, Li J J, Deng J, Han J, Ma L Y and Liu T 2013 Acta Phys. Sin. 62 026801 (in Chinese)
[16] Dang V S, Banerjee M, Zhu H Z, Srinivasan N B, Parala H, Pfetzing-Micklich J, Wieck A D and Devi A 2014 Chem. Vap. Deposition 20 320
[17] Chen Z, Prud'homme N, Wang B and Ji V 2011 Surf. Coat. Tech. 206 405
[18] Li X P, Zhang B L, Zhu H C, Dong X, Xia X C, Cui Y G, Huang K K and Du G T 2008 Appl. Surf. Sci. 254 2081
[19] Singh R, Sinha S, Thakur R P S and Chou P C 1991 Appl. Phys. Lett. 58 1217
[20] Fang X J, Li G X, Li S W, Zhao L, Li W C, Zhang B L, Du G T, Chou P C, Li H, Zuo R, He L and Chen C P 2008 Physica C 468 1053
[21] Li G X, Fang X J, Zhao L, Li S W, Gao Z M, Li W C, Yin J Z, Zhang B L, Du G T, Chou P C, He L and Chen C P 2008 Physica C 468 2213
[22] Li W, Li S W, Li G X, Zhang B L and Chou P C 2013 IEEE Trans. Appl. Supercond. 23 7200606
[23] Li G X, Li S W, Li W, Wang X S, Guo F, Zhang B L and Chou P C 2014 Physica C 507 17
[24] Wang L K, Liu R J, Yang H Y, Lü Y, Li G X, Zhang Y T and Zhang B L 2014 Chin. Phys. B 23 088110
[25] Zhang J X, Cui X J, Shi Z F, Wu B, Zhang Y T and Zhang B L 2014 Superlattices Microstruct. 71 23
[26] Li W, Li S W, Li G X, Zhang B L and Chou P C 2013 Appl. Surf. Sci. 264 748
[27] Chou P C, Zhong Q, Li Q L, Abazajian K, Ignatiev A, Wang C Y, Deal E E and Chen J G 1995 Physica C 254 93
[28] Yang H Y, Liu R J, Lü Y, Wang L K, Li T T, Li G X, Zhang Y T and Zhang B L 2014 Chem. Res. Chin. Univ. 30 13
[29] Gibert M, Abellan P, Martínez L, Roman E, Crespi A, Sandiumenge F, Puig T and Obradors X 2011 CrystEngComm 13 6719
[30] Gibert M, García A, Puig T and Obradors X 2010 Phys. Rev. B 82 165415
[1] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[2] Isostructural phase transition-induced bulk modulus multiplication in dopant-stabilized ZrO2 solid solution
Min Wang(王敏), Wen-Shu Shen(沈文舒), Xiao-Dong Li(李晓东), Yan-Chun Li(李延春), Guo-Zhao Zhang(张国召), Cai-Long Liu(刘才龙), Lin Zhao(赵琳), Shu-Peng Lv(吕舒鹏), Chun-Xiao Gao(高春晓), Yong-Hao Han(韩永昊). Chin. Phys. B, 2019, 28(7): 076109.
[3] Carbon-nanodot-coverage-dependent photocatalytic performance of carbon nanodot/TiO2 nanocomposites under visible light
Ming-Ye Sun(孙明烨), You-Jin Zheng(郑友进), Lei Zhang(张蕾), Li-Ping Zhao(赵立萍), Bing Zhang(张冰). Chin. Phys. B, 2017, 26(5): 058101.
[4] Fabrication of crystalline selenium microwire
Shuai Peng(彭帅), Guo-Wu Tang(唐国武), Min Sun(孙敏), Wang-Wang Liu(刘旺旺), Xiu-Jie Shan(单秀杰), Qi Qian(钱奇), Dong-Dan Chen(陈东丹), Qin-Yuan Zhang(张勤远), Zhong-Min Yang(杨中民). Chin. Phys. B, 2017, 26(4): 048101.
[5] Large scale and controllable preparation of W2C nanorods or WC nanodots with peroxidase-like catalytic activity
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(4): 048103.
[6] Controllable preparation of tungsten/tungsten carbide nanowires or nanodots in nanostructured carbon with hollow macroporous core/mesoporous shell
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(3): 038103.
[7] Structural, optical, and electrical properties of Cu-doped ZrO2 films prepared by magnetron co-sputtering
Nian-Qi Yao(姚念琦), Zhi-Chao Liu(刘智超), Guang-Rui Gu(顾广瑞), Bao-Jia Wu(吴宝嘉). Chin. Phys. B, 2017, 26(10): 106801.
[8] The charge storage characteristics of ZrO2 nanocrystallite-based charge trap nonvolatile memory
Tang Zhen-Jie (汤振杰), Li Rong (李荣), Yin Jiang (殷江). Chin. Phys. B, 2013, 22(6): 067702.
[9] Annealing effects on the microwave permittivity and permeability properties of Fe79Si16B5 microwires and their micowave absorption performances
Han Man-Gui(韩满贵), Ou Yu (欧雨), Liang Di-Fei (梁迪飞), and Deng Long-Jiang(邓龙江). Chin. Phys. B, 2009, 18(3): 1261-1265.
[10] Numerical study on the thermo-stress of ZrO2 thermal and barrier coatings by high-intensity pulsed ion beam irradiation
Wu Di(吴迪),Liu Chen(刘臣), Zhu Xiao Peng(朱小鹏), and Lei Ming Kai(雷明凯) . Chin. Phys. B, 2009, 18(11): 4976-4980.
[11] Effect of annealing treatments on the microwave electromagnetic properties of amorphous FeCuNbSiB microwires
Liang Di-Fei(梁迪飞), Han Man-Gui(韩满贵), Yan Bo(鄢波), and Deng Long-Jiang(邓龙江). Chin. Phys. B, 2007, 16(2): 542-547.
[12] Positive deviation from Debye's theory in small-angle x-ray scattering
Li Zhi-Hong (李志宏), Gong Yan-Jun (巩雁军), Wu Dong (吴东), Sun Yu-Han (孙予罕), Zhao Hui (赵辉), Dong Bao-Zhong (董宝中), Wu Zhong-Hua (吴忠华), . Chin. Phys. B, 2003, 12(2): 208-210.
No Suggested Reading articles found!