Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 113101    DOI: 10.1088/1674-1056/25/11/113101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretics-directed effect of copper or aluminum content on the ductility characteristics of Al-based (Al3Ti,AlTi,AlCu,AlTiCu2) intermetallic compounds

Yong Li(李勇)1,2, Xiao-Juan Ma(马小娟)1,2, Qi-Jun Liu(刘其军)1,2, Ge-Xing Kong(孔歌星)1,2, Hai-Xia Ma(马海霞)1,2, Wen-Peng Wang(王文鹏)1,2, Yi-Gao Wang(汪贻高)1,2, Zhen Jiao(焦振)1,2, Fu-Sheng Liu(刘福生)1,2, Zheng-Tang Liu(刘正堂)3
1 Key Laboratory of Advanced Technologies of Materials of Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
2 Sichuan Provincial Key Laboratory(for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  First-principle simulations have been applied to investigate the effect of copper (Cu) or aluminum (Al) content on the ductility of Al3Ti, AlTi, AlCu, and AlTiCu2 alloys. The mechanical stable and elastic properties of Al-based intermetallic compounds are researched by density functional theory with the generalized gradient approximation (DFT-GGA). The calculated lattice constants are in conformity with the previous experimental and theoretical data. The deduced elastic constants show that the investigated Al3Ti, AlTi, AlCu, and AlTiCu2 structures are mechanically stable. Shear modulus, Young's modulus, Poisson's ratio, and the ratio B/G have also been figured out by using reckoned elastic constants. A further analysis of Young's modulus and Poisson's ratio reveals that the third added element copper content has significant effects on the Al-Ti-based ICs ductile character.
Keywords:  intermetallics      brittleness and ductility      elastic properties      ab-initiocalculations  
Received:  08 June 2016      Revised:  03 July 2016      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  31.15.E-  
  46.25.-y (Static elasticity)  
  47.54.Jk (Materials science applications)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41674088, 11574254, 11272296, and 11547311), the National Basic Research Program of China (Grant No. 2011CB808201), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2682014ZT30 and 2682014ZT31), and the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China (Grant No. SKLSP201511).
Corresponding Authors:  Xiao-Juan Ma     E-mail:  mxj_swjtu@126.com

Cite this article: 

Yong Li(李勇), Xiao-Juan Ma(马小娟), Qi-Jun Liu(刘其军), Ge-Xing Kong(孔歌星), Hai-Xia Ma(马海霞), Wen-Peng Wang(王文鹏), Yi-Gao Wang(汪贻高), Zhen Jiao(焦振), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂) Theoretics-directed effect of copper or aluminum content on the ductility characteristics of Al-based (Al3Ti,AlTi,AlCu,AlTiCu2) intermetallic compounds 2016 Chin. Phys. B 25 113101

[1] Zhang G T, Bai T T and Yan H Y 2015 Chin. Phys. B 24 097103
[2] Guler E and Guler M 2013 Chin. Phys. Lett. 30 056201
[3] Tan H, Dai C D and Tan Y 2015 Chin. Phys. B 24 066201
[4] Zhang W B, Zeng F and Tang B Y 2015 Chin. Phys. B 24 097103
[5] Choudhary M A, Shakil M and Mahmood K 2015 Chin. Phys. B 24 076106
[6] Hang C J, Wang C Q, Mayer M, Tian Y H, Zhou Y and Wang H H 2008 Microelectron. Reliab. 48 416
[7] Liu J Z and Ghosh G 2007 Phys. Rev. B 75 104117
[8] Ghosh G, Walle A V and Asta M 2008 Acta Materialia 56 3202
[9] Zou J, Fu C L and Yoo M H 1995 Intermetallics 3 265
[10] Milman Y V, Miracle D B, Chugunova S I, Voskoboinik I V, Korzhova N P, Legkaya T N and Podrezov Y N 2001 Intermetallics 9 839
[11] Du H, Zhao H B, Xiong J, Wan W C, Wu Y M, Wang L L and Xian G 2014 Int. J. Refract. Met. Hard Mater. 46 173
[12] Zhou W P, Liang J C, Zhang F G, Mu J G and Zhao H B 2014 Appl. Surf. Sci. 313 10
[13] Ramadoss R, Kumar N, Pandian R, Dash S, Ravindran T P, Arivuoli D and Tyagi A K 2013 Tribol. Int. 66 143
[14] Bukhaiti M A, Alhatab K A, Tillmann W, Hoffmann F and Sprute T 2014 Appl. Surf. Sci. 318 180
[15] Wu X H 2006 Intermetallics 14 1114
[16] Wang L, Liu W, Li Y, Shi Y L, Lao Y X, Lu X B, Deng A H and Wang Y 2016 Chin. Phys. Lett. 33 066801
[17] Datta A and Soffa W A 1976 Acta Metal. 24 987
[18] Vanderbilt D 1990 Phys. Rev. B 41 7892
[19] Li Y, Deng A H, Zhou Y L, Zhou B, Hou Q, Shi L Q, Qin X B and Wang B Y 2012 Chin. Phys. Lett. 29 047801
[20] Wei S H and Krakauere H 1985 Phys. Rev. Lett. 55 1200
[21] Zhang S, Nic J P and Mikkola D E 1990 Scr. Metal. Mater. 24 57
[22] Hu H, Wu X Z, Wang R, Jia Z H and Li W G 2016 J. Alloys Compd. 666 185
[23] Broyden C G and Inst J 1970 Math. Comput. 6 222
[24] Fletcher R 1970 Comput. J. 13 317
[25] Goldfarb D 1967 Math. Comput. p. 368
[26] Shanno D F 1970 Math. Comput. 24 647
[27] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[28] Yamaguchi M, Umakoshi Y and Yama 1987 Phil. Mag. A 55 301
[29] Novoselova T, Maliov S, Sha W and Zhecheva A 2003 Mater. Sci. Eng. 371 103
[30] Boragy M, Szepan R and Schubert K 1972 J. Less Common Met. 29 133
[31] Meyer Z R, Schmidt P C and Weiss A 1989 Phys. Chem. 163 103
[32] Fast L, Wills J M, Johansson B and Eriksson O 1995 Phys. Rev. B 51 17431
[33] Long J P, Yang L J and Wei X S 2013 J. Alloys Compd. 549 336
[34] Piskunov S, Heifets E, Eglitis R I and Borstel G 2004 Comput. Mater. Sci. 29 165
[35] Wu Z J, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 75 054115
[36] Chen H C, Yang L J and Long J P 2015 Superlatt. Microstruc. 79 156
[37] Watt J P 1980 J. Appl. Phys. 51 1520
[38] Beckstein O, Klepeis J E, Hart G L and Pankratov O 2001 Phys. Rev. B 63 134112
[39] Hill R 1952 Proc. Phys. Soc. A 65 351
[40] Pugh S F 1954 Philos. Mag. 45 823
[41] Zhou W, Liu L J, Li B L, Song Q G and Wu P 2009 J. Electronic. Materials 38 2
[42] Chen H C, Yang L J and Long J P 2015 Superlatt. Microstruc. 79 156
[43] Feng X Z, Peng J Z, Xu Z F and Ouyang S L 2015 Eur. Phys. J. Appl. Phys. 69 10203
[44] Dong L M 2012 Mater. Sci. Eng. A 545 13
[45] Cahill D G and Pohl R O 1988 Annu. Rev. Phys. Chem. 70 927
[1] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[2] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬)†, Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), and Si-Ning Yun(云斯宁)‡. Chin. Phys. B, 2020, 29(10): 106102.
[3] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[4] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[5] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[6] First-principles study of structural, mechanical, and electronic properties of W alloying with Zr
Ning-Ning Zhang(张宁宁), Yu-Juan Zhang(张玉娟), Yu Yang(杨宇), Ping Zhang(张平), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(4): 046301.
[7] Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7
Gang Jian(简刚), Mei-Rui Liu(刘美瑞), Chen Zhang(张晨), Jie Lu(卢杰), Chao Yan(晏超). Chin. Phys. B, 2019, 28(2): 026201.
[8] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[9] The effects of combining alloying elements on the elastic properties of γ-Ni in Ni-based superalloy: High-throughput first-principles calculations
Baokun Lu(路宝坤), Chongyu Wang(王崇愚). Chin. Phys. B, 2018, 27(7): 077104.
[10] Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation
Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞). Chin. Phys. B, 2018, 27(5): 057101.
[11] The structure and elasticity of phase B silicates under high pressure by first principles simulation
Lei Liu(刘雷), Li Yi(易丽), Hong Liu(刘红), Ying Li(李营), Chun-Qiang Zhuang(庄春强), Long-Xing Yang(杨龙星), Gui-Ping Liu(刘桂平). Chin. Phys. B, 2018, 27(4): 047402.
[12] First principles study of ceramic materials (IVB group carbides) under ultrafast laser irradiation
Nan-Lin He(何南燐), Xin-Lu Cheng(程新路), Hong Zhang(张红), Gai-Qin Yan(闫改琴), Jia Zhang(张佳). Chin. Phys. B, 2018, 27(3): 036301.
[13] First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallic cage compounds
Shanyu Quan(权善玉), Xudong Zhang(张旭东), Cong Liu(刘聪), Wei Jiang(姜伟). Chin. Phys. B, 2018, 27(12): 126201.
[14] First-principles investigations on the mechanical, thermal,electronic, and optical properties of the defect perovskites Cs2SnX6 (X= Cl, Br, I)
Hai-Ming Huang(黄海铭), Zhen-Yi Jiang(姜振益), Shi-Jun Luo(罗时军). Chin. Phys. B, 2017, 26(9): 096301.
[15] Elastic properties of CaCO3 high pressure phases from first principles
Dan Huang(黄丹), Hong Liu(刘红), Ming-Qiang Hou(侯明强), Meng-Yu Xie(谢梦雨), Ya-Fei Lu(鹿亚飞), Lei Liu(刘雷), Li Yi(易丽), Yue-Ju Cui(崔月菊), Ying Li(李营), Li-Wei Deng(邓力维), Jian-Guo Du(杜建国). Chin. Phys. B, 2017, 26(8): 089101.
No Suggested Reading articles found!