Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 105201    DOI: 10.1088/1674-1056/25/10/105201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electronic transport of Lorentz plasma with collision and magnetic field effects

Chong Lv(吕冲)1, Feng Wan(弯峰)1, Mo-Ran Jia(贾默然)1, Zi-Liang Li(李子良)1, Hai-Bo Sang(桑海波)1, Bai-Song Xie(谢柏松)1,2
1 College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 Beijing Radiation Center, Beijing 100875, China
Abstract  The electronic transverse transport of Lorentz plasma with collision and magnetic field effects is studied by solving the Boltzmann equation for different electron density distributions. For the Maxwellian distribution, it is shown that transport coefficients decrease as Ω increases, Ω is the ratio of an electron's magneto-cyclotron frequency to plasma collision frequency. It means that the electrons are possible to be highly collimated by a strong magnetic field. For the quasi-monoenergetic distribution with different widths, it is found that the transport coefficients decrease greatly as ε decreases. In particular when the width approaches to zero the transverse transport coefficients are hardly affected by the magnetic field and the minimal one is obtained. Results imply that the strong magnetic field and quasi-monoenergetic distribution are both beneficial to reduce the electronic transverse transport. This study is also helpful to understand the relevant problems of plasma transport in the background of the inertial confinement fusion.
Keywords:  transverse transport coefficients      magnetic field      collision      distribution  
Received:  21 March 2016      Revised:  27 May 2016      Accepted manuscript online: 
PACS:  52.25.Fi (Transport properties)  
  52.38.Fz (Laser-induced magnetic fields in plasmas)  
  52.57.-z (Laser inertial confinement)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475026 and 11305010) and the NSAF of China (Grant No. U1530153).
Corresponding Authors:  Bai-Song Xie     E-mail:  bsxie@bnu.edu.cn

Cite this article: 

Chong Lv(吕冲), Feng Wan(弯峰), Mo-Ran Jia(贾默然), Zi-Liang Li(李子良), Hai-Bo Sang(桑海波), Bai-Song Xie(谢柏松) Electronic transport of Lorentz plasma with collision and magnetic field effects 2016 Chin. Phys. B 25 105201

[1] Lindl J F 1998 Inertial Confinement Fusion (New York: Springer-Verlag)
[2] Atzeni S and Meyer-Ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford Science Press)
[3] Lindl J, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. plasmas 11 339
[4] Key M H 2008 Phys. plasmas 11 022701
[5] Cohen R S, Spitzer L and Routly P M 1950 Phys. Rev. 80 230
[6] Spitzer L and Härm R 1953 Phys. Rev. 89 977
[7] Braginskii S I 1966 Rev. Plasma Phys. 1 205
[8] Luciani J F, Mora P and Virmont J 1983 Phys. Rev. Lett. 51 1664
[9] Stamper J A, Papadopoulos K, Sudan R N, Dean S O, Mclean E A and Dawson J M ó1971 Phys. Rev. Lett. 26 1012
[10] Glenzer S H, Alley W E, Estabrook K G, De Groot J S, Haines M G, Hammer J H, Jadaud J P, MacGowan B J, Moody J D, Rozmus W, Suter L J, Weiland T L and Williams E A ó1999 Phys. Plasmas 6 2117
[11] Zheng W Z, Zhao B, Hu G Y and Zheng J ó2015 Acta Phys. Sin. 64 195201 (in Chinese)
[12] Zhang W, Hu L Q, Sun Y W, Ding S Y, Zhang Z J and Liu S L ó2014 Chin. Phys. B 23 105201
[13] Li K, Li Y T, Zhang J, Yuan X H, Xu M H, Wang Z H and Zhang J ó2014 Acta Phys. Sin. 55 5909 (in Chinese)
[14] Langdon A B ó1980 Phys. Rev. Lett. 44 575
[15] Liu S Q and Guo H M ó2011 Acta Phys. Sin. 60 055203 (in Chinese)
[16] Huo W Y and Zeng Q H ó2015 Phys. Plasmas 22 094503
[17] Davies J R, Bell A R and Tatarakis M ó1999 Phys. Rev. E 59 6032
[18] Cai H B, Zhu S P, Chen M, Wu S Z, He X T and Mima K ó2011 Phys. Rev. E 83 036408
[19] Bake M A, Xie B S, Zhang S and Wang H Y ó2013 Phys. Plasmas 20 033112
[20] Zhu S P, He X T and Zheng C Y ó2001 Phys. Plasmas 8 321
[21] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D and Mason R J ó1994 Phys. Plasmas 1 1626
[22] Wu F J, Zhou W M, Shan L Q, Li F, Liu D X, Zhang Z M, Li B Y, Bi B, Wu B, Wang W W, Zhang F, Gu Y Q and Zhang B H ó2014 Acta Phys. Sin. 63 094101 (in Chinese)
[23] Tatarakis M, Gopal A, Watts I, Beg F N, Dangor A E, Krushelnick K, Norreys P A, Clark E L, Zepf M and Evans R G ó2002 Phys. Plasmas 9 2244
[24] Sentoku Y, Mima K, Taguchi T, Miyamoto S and Kishimoto Y ó1998 Phys. Plasmas 5 4366
[25] Sentoku Y, Mima K and Miyamoto S ó1999 Fusion Eng. Des. 44 233
[26] Sentoku Y and Kemp A J ó2008 J. Comput. Phys. 227 6846
[27] Kemp A J, Sentoku Y, Sotnikov V and Wilks S C ó2006 Phys. Rev. Lett. 97 235001
[28] Lifshitz E M and Pitaevskii L P ó1999 Physical Kinetics (Beijing: World Publishing Corporation) pp. 227-231
[29] Huang Z Q and Ding E J ó2008 Transport Theory (Beijing: Science Press) p. 438
[30] Du J L ó2013 Phys. Plasmas 20 092901
[31] Robinson A P L and Sherlock M ó2007 Phys. Plasmas 14 083105
[32] Ridgers C P, Kingham R J and Thomas A G R ó2008 Phys. Rev. Lett. 100 075003
[33] Bissell J J, Ridgers C P and Kingham R J ó2013 New J. Phys. 15 025017
[34] Cai H B, Zhu S P and He X T ó2013 Phys. Plasmas 20 072701
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[7] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[8] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[9] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[10] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[11] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[12] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[13] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[14] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[15] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
No Suggested Reading articles found!