Preparation and piezoelectric properties of potassium sodium niobate glass ceramics
Jiang Shan (姜珊)a, Wang Xuan-Ming (王炫明)b, Li Jia-Yu (李佳宇)c, Zhang Yong (张勇)a, Zheng Tao (郑涛)a, Lv Jing-Wen (吕景文)a
a Material Science and Engineering Institute, Changchun University of Science and Technology, Changchun 130022, China; b Beijing University of Posts and Telecommunications, Beijing 100876, China; c China Building Materials Academy, Beijing 100024, China
Abstract This paper describes the preparation of a piezoelectric glass ceramic material from potassium sodium niobate (K0.5Na0.5NbO3; KNN) using a novel melting method. The effects of the subsequent heat-treatment on the optical, thermal, electrical, and mechanical properties of the material are carefully examined, and its crystal structure and surface morphology are characterized respectively by x-ray diffraction and scanning electron microscopy. This new material has a much higher piezoelectric coefficient (163 pC·N-1) than traditional piezoelectric ceramics (131 pC·N-1). On this basis therefore, a strategy for the future study and development of lead-free KNN-based piezoelectric glass ceramics is proposed.
Al-doping-induced magnetocapacitance in the multiferroic AgCrS2 Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.