Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 057102    DOI: 10.1088/1674-1056/24/5/057102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

Li Xin, Zhou Wei-Man, Liu Wei-Hua, Wang Xiao-Li
Department of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn–Plummer method. The ZnO NPs reconstruct the ZnO–CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results.
Keywords:  carbon nanotubes (CNTs)      ZnO      field emission      Penn–Plummer model     
Received:  03 October 2014      Published:  05 May 2015
PACS:  71.55.-i (Impurity and defect levels)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.23.Ad (Ballistic transport)  
  73.63.Fg (Nanotubes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).
Corresponding Authors:  Li Xin     E-mail:  lx@mail.xjtu.edu.cn
About author:  71.55.-i; 71.15.Mb; 73.23.Ad; 73.63.Fg

Cite this article: 

Li Xin, Zhou Wei-Man, Liu Wei-Hua, Wang Xiao-Li Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes 2015 Chin. Phys. B 24 057102

[1] Sun X W, Huang J Z, Wang J X and Xu Z 2008 Nano Lett. 8 1219
[2] Peng N, Zhang Q, Lee Y C, Tan O K and Marzari N 2008 Sensor. Actuat. B 132 191
[3] Wang Q H, Yan M and Chang R P 2001 Appl. Phys. Lett. 78 1294
[4] Zhang J M, Du X J, Wang S F and Xu K W 2009 Chin. Phys. B 18 5468
[5] Verma P, Gautam S, Pal S, Kumar1 P and Chaturvedi P 2008 Defence Sci. J. 58 650
[6] Kim S, Cho E, Han S and Cho Y 2009 Solid State Commun. 149 670
[7] Wang Y Jun, Wang L D, Yang M and Yan C 2011 Chin. Phys. B 20 117304
[8] Jin L, Fu H G, Xie Y and Yu H T 2012 Chin. Phys. B 21 057901
[9] Korobeinyk A V, Whitby R L D, Niu J J, Gogotsi Y and Mikhalovsky S V 2011 Mater. Chem. Phys. 128 514
[10] Ratkovic S, Vujicic D, Kiss E, Boskovic G and Geszti O 2011 Mater. Chem. Phys. 129 398
[11] Li X, Liu W and Zhu C 2008 J. Vac. Sci. Technol. B 26 171
[12] Papadopoulos C A, Vlachos D S and Avaritsiotis J N 1996 Sensor. Actuat. B 32 61
[13] Li X, Zhao D C, Pang K G, Pang J C, Liu W H, Liu H Z and Wang X L 2013 Appl. Surf. Sci. 283 740
[14] Penn D R 1976 Phys. Rev. B 14 849
[15] Fairchild S B, Back T C, Murray P T and Cahay M M 2011 J. Vac. Sci. Technol. A 29 031402
[16] Choi I M, Woo S Y and Hong S S 2006 J. Vac. Sci. Technol. A 24 1556
[17] Zhang X and Song Y R 2014 Chin. Phys. B 23 064204
[18] Xie Y and Zhang J M 2011 Chin. Phys. B 20 127302
[19] Liu C L, Kim K S and Baek J 2009 Carbon 47 1158
[20] Mayer A, Miskovsky N M, Cutler P H and Lambin P 2003 Phys. Rev. B 68 235401
[21] Liu H Z, Ma H, Zhou W M, Liu W H, Zheng J and Li X 2012 Appl. Surf. Sci. 258 1991
[22] Liu X H, Zhu C C and Liu W H 2005 Mater. Chem. Phys. 92 473
[1] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[2] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[3] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[4] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[5] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[6] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[7] High efficient Al: ZnO based bifocus metalens in visible spectrum
Pengdi Wang(王鹏迪), Xianghua Zeng(曾祥华). Chin. Phys. B, 2020, 29(10): 104211.
[8] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[9] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[10] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[11] Energy band alignment at Cu2O/ZnO heterojunctions characterized by in situ x-ray photoelectron spectroscopy
Yan Zhao(赵妍), Hong-Bu Yin(尹泓卜), Ya-Jun Fu(符亚军), Xue-Min Wang(王雪敏), Wei-Dong Wu(吴卫东). Chin. Phys. B, 2019, 28(8): 087301.
[12] Effects of active layer thickness on performance and stability of dual-active-layer amorphous InGaZnO thin-film transistors
Wenxing Huo(霍文星), Zengxia Mei(梅增霞), Yicheng Lu(卢毅成), Zuyin Han(韩祖银), Rui Zhu(朱锐), Tao Wang(王涛), Yanxin Sui(隋妍心), Huili Liang(梁会力), Xiaolong Du(杜小龙). Chin. Phys. B, 2019, 28(8): 087302.
[13] Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤). Chin. Phys. B, 2019, 28(4): 048101.
[14] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[15] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
No Suggested Reading articles found!