Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050205    DOI: 10.1088/1674-1056/24/5/050205
GENERAL Prev   Next  

A local energy-preserving scheme for Klein–Gordon–Schrödinger equations

Cai Jia-Xianga b, Wang Jia-Lina, Wang Yu-Shuna
a Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210046, China;
b School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China
Abstract  A local energy conservation law is proposed for the Klein–Gordon–Schrödinger equations, which is held in any local time–space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time–space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2+h2). The theoretical properties are verified by numerical experiments.
Keywords:  Klein–Gordon–Schrödinger equations      energy conservation law      local structure      convergence analysis  
Received:  28 November 2014      Revised:  09 December 2014      Published:  05 May 2015
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project of Graduate Education Innovation of Jiangsu Province, China (Grant No. CXLX13_366).
Corresponding Authors:  Wang Yu-Shun     E-mail:,
About author:  02.60.Cb; 02.70.Bf; 02.60.Lj

Cite this article: 

Cai Jia-Xiang, Wang Jia-Lin, Wang Yu-Shun A local energy-preserving scheme for Klein–Gordon–Schrödinger equations 2015 Chin. Phys. B 24 050205

[1] Fukuda I and Tsutsumi H 1975 Proc. Japan Acad. 51 402
[2] Lu K and Wang B 2001 J. Differ. equations 170 281
[3] Natali F and Pastor A 2010 Commun. Pure Appl. Anal. 9 413
[4] Zhang L 2005 Appl. Math. Comput. 163 343
[5] Kong L, Liu R and Xu Z 2006 Appl. Math. Comput. 181 342
[6] Cai J, Yang B and Liang H 2013 Chin. Phys. B 22 030209
[7] Hong J, Jiang S and Li C 2009 J. Comput. Phys. 228 3517
[8] Kong L 2010 Comput. Phys. Commun. 181 1369
[9] Hong J 2007 J. Phys. A: Math. Theor. 40 9125
[10] Wang T and Jiang Y 2012 Commun. Nonlinear Sci. Numer. Simul. 17 4565
[11] Xiang X 1988 J. Comput. Appl. Math. 21 161
[12] Bao W and Yang L 2007 J. Comput. Phys. 225 1863
[13] Zhang H 2014 Chin. Phys. B 23 080204
[14] Xanthopoulos P and Zouraris G 2008 Discrete Contin. Dyn. Syst. Ser. B 10 239
[15] Qin M Z and Wang Y S 2012 (Zhejiang: Science and Technology Publishing House)
[16] Wang Y, Wang B and Qin M 2008 Sci. Chin. Series A: Mathematics 51 2115
[17] Cai J, Wang Y and Liang H 2013 J. Comput. Phys. 239 30
[18] Cai J and Wang Y 2013 J. Comput. Phys. 239 72
[19] Zhou Y 1990 (Beijing: International Academic Publishers)
[1] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[2] Structure instability-induced high dielectric properties in[001]-oriented 0.68Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 crystals
Xiao-Juan Li(李晓娟), Xing Fan(樊星), Zeng-Zhe Xi(惠增哲), Peng Liu(刘鹏), Wei Long(龙伟), Pin-Yang Fang(方频阳), Rui-Hua Nan(南瑞华). Chin. Phys. B, 2019, 28(5): 057701.
[3] Ultra-high-density local structure in liquid water
Cheng Yang(杨成), Chuanbiao Zhang(张传彪), Fangfu Ye(叶方富), Xin Zhou(周昕). Chin. Phys. B, 2019, 28(11): 116104.
[4] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[5] Atomic pair distribution function method development at the Shanghai Synchrotron Radiation Facility
Xiao-Juan Zhou(周晓娟), Ju-Zhou Tao(陶举洲), Han Guo(郭瀚), He Lin(林鹤). Chin. Phys. B, 2017, 26(7): 076101.
[6] Local microstructural analysis for Y2O3/Eu3+/Mg2+ nanorods by Raman and photoluminescence spectra under high pressure
Jin-Hua Wang(王金华), Ze-Peng Li(李泽朋), Bo Liu(刘波), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2017, 26(2): 026101.
[7] Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity
Jia-Xiang Cai(蔡加祥), Qi Hong(洪旗), Bin Yang(杨斌). Chin. Phys. B, 2017, 26(10): 100202.
[8] Dynamic properties of chasers in a moving queue based on a delayed chasing model
Ning Guo(郭宁), Jian-Xun Ding(丁建勋), Xiang Ling(凌翔), Qin Shi(石琴), Reinhart Kühne. Chin. Phys. B, 2016, 25(5): 050505.
[9] Extended x-ray absorption fine structure study of MnFeP0.56Si0.44 compound
Li Ying-Jie, Haschaolu W, Wurentuya, Song Zhi-Qiang, Ou Zhi-Qiang, Tegus O, Nakai Ikuo. Chin. Phys. B, 2015, 24(8): 086101.
[10] Structural origin underlying the effect of cooling rate on solidification point
Li Chen-Hui, Han Xiu-Jun, Luan Ying-Wei, Li Jian-Guo. Chin. Phys. B, 2015, 24(11): 116101.
[11] Local structure distortion and spin Hamiltonian parameters of oxide-diluted magnetic semiconductor Mn-doped ZnO
Yang Zi-Yuan. Chin. Phys. B, 2009, 18(3): 1253-1260.
[12] Formation mechanism of Ge nanocrystals embedded in SiO2 studied by fluorescence x-ray absorption fine structure
Yan Wen-Sheng, Li Zhong-Rui, Sun Zhi-Hu, Pan Zhi-Yun, Wei Shi-Qiang. Chin. Phys. B, 2007, 16(9): 2764-2768.
No Suggested Reading articles found!