Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 035202    DOI: 10.1088/1674-1056/24/3/035202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Start-up phase plasma discharge design of a tokamak via control parameterization method

Guo Shana, Xu Kea, Xu Chaob, Ren Zhi-Gangb, Xiao Bing-Jiac
a Department of Mathematics, Zhejiang University, Hangzhou 310027, China;
b State Key Laboratory of Industrial Control Technology and Institute of Cyber-Systems & Control, Zhejiang University, Hangzhou 310027, China;
c Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  The tokamak start-up is a very important phase during the process to obtain a suitable equalizing plasma, and its governing model can be described as a set of nonlinear ordinary differential equations (ODEs). In this paper, we first estimate the parameters in the original model and set up an accurate model to express how the variables change during the start-up phase, especially how the plasma current changes with respect to time and the loop voltage. Then, we apply the control parameterization method to obtain an approximate optimal parameters selection problem for the loop voltage design to achieve a desired plasma current target. Computational optimal control techniques such as the variational method and the costate method are employed to solve the problem, respectively. Finally, numerical simulations are performed and the results obtained via different methods are compared. Our numerical parameterization method and optimization procedure turn out to be effective.
Keywords:  tokamak      start-up      optimal control      variational method  
Received:  16 September 2014      Revised:  29 October 2014      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  02.60.Pn (Numerical optimization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61104048 and 61473253) and the National High Technology Research and Development Program of China (Grant No. 2012AA041701).
Corresponding Authors:  Xu Chao     E-mail:  cxu@zju.edu.cn

Cite this article: 

Guo Shan, Xu Ke, Xu Chao, Ren Zhi-Gang, Xiao Bing-Jia Start-up phase plasma discharge design of a tokamak via control parameterization method 2015 Chin. Phys. B 24 035202

[1] Schultz K R 2006 IEEE Control Syst. 26 32
[2] Mukhovatov V S and Shafranov V D 1971 Nucl. Fusion 11 605
[3] Xu C, Ou Y, Dalessio J, Schuster E, Luce T C, Ferron J R, Walker M L and Humphreys D A 2010 IEEE Trans. Plasma Sci. 38 163
[4] Knoepful H 1985 Tokamak Start-up: Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor (New York: Springer) pp. 7-43
[5] Papoular R 1976 Nucl. Fusion 16 37
[6] Ikeda K 2007 Nucl. Fusion 47 preface
[7] Lloyd B, Carolan P G and Warrick C D 1996 Plasma Phys. Control. Fusion 38 1627
[8] Azizov E A, Barkalov A D, Gladush G G, et al. 2003 Problems of Atomic Science and Technology. Series: Plasma Physics 1 49
[9] Barkalov A D and Gladush G G 2007 Plasma Devices and Operations 15 185
[10] Leuer J A, Xiao B J, Humphreys D A, Walker M L, Hyatt A W, Jackson G L, Mueller D, Penaflor B G, Piglowski D A, Johnson R D and others 2010 Fusion Science and Technology 57 48
[11] Teo K L, Goh C J and Wong K H 1991 A Unified Computational Approach to Optimal Control Problems (New York: Longman Scientific and Technical) pp. 99-122
[12] Lin Q, Loxton R and Teo K L 2013 Journal of the Operations Research Society of China 1 275
[13] Yu X, Ren Z G and Xu C 2014 Chin. Phys. B 23 040201
[14] Byrd R H, Gilbert J C and Nocedal J 2000 Math. Program. 89 149
[15] Nocedal J and Wright S J 2006 Numerical Optimization (New York: Springer) pp. 526-572
[16] Loxton R, Teo K L and Rehbock V 2008 Automatica 44 2923
[1] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[2] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[3] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[4] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[5] Topological classification of periodic orbits in Lorenz system
Chengwei Dong(董成伟). Chin. Phys. B, 2018, 27(8): 080501.
[6] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[7] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[8] Resonances for positron-helium and positron-lithium systems in kappa-distribution plasma
Zi-Shi Jiang(姜子实), Ya-Chen Gao(高亚臣), Sabyasachi Kar, Kurunathan Ratnavelu. Chin. Phys. B, 2018, 27(12): 123402.
[9] Odd-even harmonic emission from asymmetric molecules: Identifying the mechanism
Jianguo Chen(陈建国), Shujuan Yu(于术娟), Yanpeng Li(李雁鹏), Shang Wang(王赏), Yanjun Chen(陈彦军). Chin. Phys. B, 2017, 26(9): 094209.
[10] Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit
Yao Huang(黄耀), Bing-Jia Xiao(肖炳甲), Zheng-Ping Luo(罗正平). Chin. Phys. B, 2017, 26(8): 085204.
[11] Energetic-ion excited internal kink modes with weak magnetic shear in q0 >1 tokamak plasmas
Wen-Ming Chen(陈文明), Xiao-Gang Wang(王晓钢), Xian-Qu Wang(王先驱), Rui-Bin Zhang(张瑞斌). Chin. Phys. B, 2017, 26(8): 085201.
[12] Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration
Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林). Chin. Phys. B, 2017, 26(6): 065201.
[13] Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field
Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁). Chin. Phys. B, 2016, 25(7): 077804.
[14] A divertor plasma configuration design method for tokamaks
Yong Guo(郭勇), Bing-Jia Xiao(肖炳甲), Lei Liu(刘磊), Fei Yang(杨飞), Yuehang Wang(汪悦航), Qinglai Qiu (仇庆来). Chin. Phys. B, 2016, 25(11): 115201.
[15] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
No Suggested Reading articles found!