Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 030201    DOI: 10.1088/1674-1056/24/3/030201
GENERAL   Next  

Nonlocal symmetries and negative hierarchies related to bilinear Bäcklund transformation

Hu Xiao-Ruia, Chen Yongb
a Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China;
b Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China

In this paper, nonlocal symmetries defined by bilinear Bäcklund transformation for bilinear potential KdV (pKdV) equation are obtained. By introducing an auxiliary variable which just satisfies the Schwartzian form of KdV (SKdV) equation, the nonlocal symmetry is localized and the Levi transformation is presented. Besides, based on three different types of nonlocal symmetries for potential KdV equation, three sets of negative pKdV hierarchies along with their bilinear forms are constructed. An impressive result is that the coefficients of the third type of (bilinear) negative pKdV hierarchy (N>0) are variable, which are obtained via introducing an arbitrary parameter by considering the translation invariance of the pKdV equation.

Keywords:  nonlocal symmetry      bilinear Bä      cklund transformation      finite transformation      negative hierarchy  
Received:  22 July 2014      Revised:  15 October 2014      Published:  05 March 2015
PACS:  02.30.Ik (Integrable systems)  
  02.20.-a (Group theory)  
  04.20.Jb (Exact solutions)  

Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ13A010014), the National Natural Science Foundation of China (Grant Nos. 11326164, 11401528, and 11275072), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120076110024).

Corresponding Authors:  Hu Xiao-Rui     E-mail:

Cite this article: 

Hu Xiao-Rui, Chen Yong Nonlocal symmetries and negative hierarchies related to bilinear Bäcklund transformation 2015 Chin. Phys. B 24 030201

[1] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer)
[2] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer)
[3] Oevel W and Carillo S 1998 J. Math. Anal. Appl. 217 161
[4] Oevel W and Schief W 1994 Rev. Math. Phys. 6 1301
[5] Loris I and Willox R 1997 J. Phys. A 30 6925
[6] Lou S Y 1993 Phys. Lett. B 302 261
[7] Lou S Y 1994 J. Math. Phys. 35 2390
[8] Lou S Y and Hu X B 1997 J. Phys. A: Math. Gen. 30 L95
[9] Edelen D G B 1980 Isovector Methods for Equations of Balance (Alphen aam den Rijn: Sijthoff and Noordhoff)
[10] Krasil'shchik I S and Vinogradov A M 1984 Acta Appl. Math. 2 79
[11] Krasil'shchik I S and Vinogradov A M 1989 Aata Appl. Math. 15 161
[12] Galas F 1992 J. Phys. A 25 L981
[13] Hu X B, Lou S Y and Qian X M 2009 Stud. Appl Math. 122 305
[14] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
[15] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[16] Li Y Q, Chen J C, Chen Y and Lou S Y 2014 Chin. Phys. Lett. 31 010201
[17] Xin X P, Miao Q and Chen Y 2014 Chin. Phys. B 23 010203
[18] Miao Q, Xin X P and Chen Y 2014 Appl. Math. Lett. 28 7
[19] Liu X Z, Yu J, Ren B and Yang H R 2014 Chin. Phys. B 23 100201
[20] Chen J C, Xin X P and Chen Y 2014 J. Math. Phys. 55 053508
[21] Chen J C and Chen Y 2014 J. Nonlinear. Math. Phys. 21 454
[22] Cheng X P, Lou S Y, Chen C L and Tang X Y 2014 Phys. Rev. E 89 043202
[23] Bluman G W and Yang Z Z 2013 J. Math. Phys. 54 093504
[24] Levi D 1988 Inverse Problems 4 165
[25] Wahlquist H D and Estabrook F B 1973 Phys. Rev. Lett. 31 1386
[26] Lou S Y 1998 Physica Scripta 57 481
[27] Hone A N W and Wang J W 2003 Inverse Problems 19 129
[28] Verosky J M 1991 J. Math. Phys. 32 1733
[1] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[2] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[3] Multiple Darboux-Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach
Shuai-Jun Liu(刘帅君), Xiao-Yan Tang(唐晓艳), Sen-Yue Lou(楼森岳). Chin. Phys. B, 2018, 27(6): 060201.
[4] Nonlocal symmetry and exact solutions of the (2+1)-dimensional modified Bogoyavlenskii-Schiff equation
Li-Li Huang(黄丽丽), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(6): 060201.
[5] Nonlocal symmetries, consistent Riccati expansion integrability, and their applications of the (2+1)-dimensional Broer-Kaup-Kupershmidt system
Hu Xiao-Rui, Chen Yong. Chin. Phys. B, 2015, 24(9): 090203.
[6] New solutions from nonlocal symmetry of the generalized fifth order KdV equation
Liu Xi-Zhong, Yu Jun, Ren Bo. Chin. Phys. B, 2015, 24(8): 080202.
[7] Residual symmetry reductions and interaction solutions of the (2+1)-dimensional Burgers equation
Liu Xi-Zhong, Yu Jun, Ren Bo, Yang Jian-Rong. Chin. Phys. B, 2015, 24(1): 010203.
[8] Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system
Liu Ping, Zeng Bao-Qing, Yang Jian-Rong, Ren Bo. Chin. Phys. B, 2015, 24(1): 010202.
[9] Riccati-type Bäcklund transformations of nonisospectral and generalized variable-coefficient KdV equations
Yang Yun-Qing, Wang Yun-Hu, Li Xin, Cheng Xue-Ping. Chin. Phys. B, 2014, 23(3): 030506.
[10] Bäcklund transformations for the Burgers equation via localization of residual symmetries
Liu Xi-Zhong, Yu Jun, Ren Bo, Yang Jian-Rong. Chin. Phys. B, 2014, 23(11): 110203.
[11] New interaction solutions of the Kadomtsev-Petviashvili equation
Liu Xi-Zhong, Yu Jun, Ren Bo, Yang Jian-Rong. Chin. Phys. B, 2014, 23(10): 100201.
[12] Nonlocal symmetry, optimal systems, and explicit solutions of the mKdV equation
Xin Xiang-Peng, Miao Qian, Chen Yong. Chin. Phys. B, 2014, 23(1): 010203.
[13] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu, Chen Yong. Chin. Phys. B, 2013, 22(5): 050509.
[14] Finite symmetry transformation group and localized structures of (2+1)-dimensional coupled Burgers equation
Lei Ya, Yang Duo. Chin. Phys. B, 2013, 22(4): 040202.
[15] Constructing infinite sequence exact solutions of nonlinear evolution equations
Taogetusang, Narenmandula. Chin. Phys. B, 2011, 20(11): 110203.
No Suggested Reading articles found!