Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127505    DOI: 10.1088/1674-1056/24/12/127505
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications

Liu Xiao-Lia b, Yang Yonga, Wu Jian-Pengb, Zhang Yi-Fanb, Fan Hai-Mingb, Ding Juna
a Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore;
b School of Chemical Engineering, Northwest University, Xi'an 710069, China

Recent discoveries in the synthesis and applications of magnetic vortex nanorings/nanodiscs in theranostic applications are reviewed. First, the principles of nanomagnetism and magnetic vortex are introduced. Second, methods for producing magnetic vortex nanorings/nanodiscs are presented. Finally, theranostic applications of magnetic vortex nanorings/nanodiscs are addressed.

Keywords:  magnetic nanorings/nanodiscs      vortex domain      magnetic resonance imaging      magnetic hyperthermia  
Received:  29 July 2015      Revised:  20 August 2015      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
  87.61.-c (Magnetic resonance imaging)  
  87.53.Jw (Therapeutic applications, including brachytherapy)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 21376192 and 81571809), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20126101110017), and MOE AcRF Tier 2-MOE2011-T2-1-043 and A-Star SERC 1321202068.

Corresponding Authors:  Ding Jun     E-mail:

Cite this article: 

Liu Xiao-Li, Yang Yong, Wu Jian-Peng, Zhang Yi-Fan, Fan Hai-Ming, Ding Jun Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications 2015 Chin. Phys. B 24 127505

[1] Hu F Q, Wei L, Zhou Z, Ran Y L, Li Z and Gao M Y 2006 Adv. Mater. 18 2553
[2] Yu J, Yang C, Li J, Ding Y, Zhang L, Yousaf M Z, Lin J, Pang R, Wei L, Xu L, Sheng F, Li C, Li G, Zhao L and Hou Y 2014 Adv. Mater. 26 4114
[3] Liu D, Wu W, Ling J, Wen S, Gu N and Zhang X 2011 Adv. Funct. Mater. 21 1498
[4] Lee J H, Huh Y M, Jun Y W, Seo J W, Jang J T, Song H T, Kim S, Cho E J, Yoon H G, Suh J S and Cheon J 2007 Nat. Med. 13 95
[5] Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H, Yang S 2010 Biomaterials 31 3667
[6] Carinelli S, Martí M, Alegret S and Pividori M I 2015 New Biotechnol.
[7] Haun J B, Castro C M, Wang R, Peterson V M, Marinelli B S, Lee H and Weissleder R 2011 Sci. Transl. Med. 3 71ra16
[8] Yavuz C T, Mayo J T, William W Y, Prakash A, Falkner J C, Yean S, Cong L, Shipley H J, Kan A, Tomson M, Natelson D and Colvin V L 2006 Science 314 964
[9] Gu H, Xu K, Xu C and Xu B 2006 Chem. Commun. 9 941
[10] Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y and Li Y 2007 ACS Nano 1 293
[11] Hergt R, Dutz S, Müller R and Zeisberger M 2006 J. Phys.: Condens. Matter 18 S2919
[12] Kumar C S and Mohammad F 2011 Adv. Drug. Deliver. Rev. 63 789
[13] Laurent S, Dutz S, Häfeli U O and Mahmoudi M 2011 Adv. Colloid Interface 166 8
[14] Yoo D, Lee J H, Shin T H and Cheon J 2011 Accounts Chem. Res. 44 863
[15] Ho D, Sun X and Sun S 2011 Accounts Chem. Res. 44 875
[16] Hao R, Xing R, Xu Z, Hou Y, Gao S and Sun S 2010 Adv. Mater. 22 2729
[17] Arruebo M, Fernández-Pacheco R, Ibarra M R and Santamaría J 2007 Nano Today 2 22
[18] Dobson J 2006 Drug. Dev. Res. 67 55
[19] Sun C, Lee J S and Zhang M 2008 Adv. Drug. Deliv. Rev. 60 1252
[20] Son S J, Reichel J, He B, Schuchman M and Lee S B 2005 J. Am. Chem. Soc. 127 7316
[21] Liu X L and Fan H M 2014 Curr. Opin. Chem. Eng. 4 38
[22] Frimpong R A and Hilt J Z 2010 Nanomedicine 5 1401
[23] Xie J, Huang J, Li X, Sun S and Chen X 2009 Curr. Med. Chem. 16 1278
[24] Guo S, Li D, Zhang L, Li J and Wang E 2009 Biomaterials 30 1881
[25] Kim D K, Mikhaylova M, Wang F H, Kehr J, Bjelke B, Zhang Y, Tsakalakos T and Muhammed M 2003 Chem. Mater. 15 4343
[26] Fortin J P, Wilhelm C, Servais J, Ménager C, Bacri J C and Gazeau F 2007 J. Am. Chem. Soc. 129 2628
[27] Lee N, Choi Y, Lee Y, Park M, Moon WK, Choi SH and Hyeon T 2012 Nano Lett. 12 3127
[28] Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M and Pellegrino T 2012 ACS Nano 6 3080
[29] Jang J T, Nah H, Lee J H, Moon S H, Kim M G and Cheon J 2009 Angew. Chem. Int. Ed. 121 1260
[30] Lee J H, Jang J T, Choi J S, Moon S H, Noh S H, Kim J W and Cheon J 2011 Nat. Nanotechnol. 6 418
[31] Duan H, Kuang M, Wang X, Wang YA, Mao H and Nie S 2008 J. Phys. Chem. C 112 8127
[32] Tong S, Tong S, Hou S, Zheng Z, Zhou J and Bao G 2010 Nano Lett. 10 4607
[33] Liu X L, Fan H M, Yi J B, Yang Y, Choo E S G, Xue J M and Ding J 2012 J. Mater. Chem. 22 8235
[34] Tromsdorf U I, Bigall N C, Kaul M G, Bruns O T, Nikolic M S, Mollwitz B and Weller H 2007 Nano Lett. 7 2422
[35] Noh S H, Na W, Jang J T, Lee J H, Lee E J, Moon S H and Cheon J 2012 Nano Lett. 12 3716
[36] Liu X L, Choo S G E, Ahmed A S, Zhao L Y, Yang Y, Ramanujan R V, Xue J M, Fan D D, Fan H M and Ding J 2014 J. Mater. Chem. B 2 120
[37] Liu X L, Wang Y T, Ng C T, Wang R, Jing G Y, Yi J B, Yang J, Bay B H, Yung L Y, Fan D D, Ding J and Fan H M 2014 Adv. Mater. Inter. 1300069 1
[38] Vergés M A, Costo R, Roca A G, Marco J F, Goya G F, Serna C J and Morales M P 2008 J Phys. D: Appl. Phys. 41 134003
[39] Lu H M, Zheng W T and Jiang Q 2007 J Phys. D: Appl. Phys. 40 320
[40] Lau J W and Shaw J M 2011 J. Phys D: Appl. Phys. 44 303001
[41] Margeat O, Dumestre F, Amiens C, Chaudret B, Lecante P, Respaud M 2005 Prog. Solid Stat. Chem. 33 71
[42] Lacroix L M, Ho D and Sun S 2010 Curr. Top. Med. Chem. 10 1184
[43] Yang Y, Liu X L, Yi J B, Yang Y, Fan H M and Ding J 2012 J. Appl. Phys. 111 044303
[44] Cullity B D and Graham C D 2011 Introduction to Magnetic Materials (Wiley IEEE Press) ISBN: 978-1-118-21149-6
[45] Jun Y W, Choi J S and Cheon J 2007 Chem. Commun. 12 1203
[46] Martnez B, Obradors X, Balcells L, Rouanet A and Monty C 1998 Phys. Rev. Lett. 80 181
[47] Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E and Tricker D M 1999 Phys. Rev. Lett. 83 1042
[48] Li S P, Peyrade D, Natali M, Lebib A, Chen Y, Ebels U, Buda L D and Ounadjela K 2001 Phys. Rev. Lett. 86 1102
[49] Shinjo T, Okuno T, Hassdorf R, Shigeto K and Ono T 2000 Science 289 930
[50] Podbielski J, Giesen F, Grundler D 2006 Phys. Rev. Lett. 96 167207
[51] Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M and Wiesendanger R 2002 Science 298 577
[52] Kim D H, Rozhkova E A, Ulasov L V, Bader S D, Rajh T, Lesniak M S and Novosad V 2009 Nat. Mater. 9 165
[53] He K, Smith D J and McCartney M R 2010 J. Appl. Phys. 107 09D307
[54] Jia C J, Sun L D, Luo F, Han X D, Heyderman L J, Yan Z G, Yan C H, Zheng K, Zhang Z, Takano M, Hayashi N, Eltschka M, Kläui M, Rüdiger U, Kasama T, Gontard L C, Dunin-Borkowski R E, Tzvetkov G and Raabe J 2008 J. Am. Chem. Soc. 130 16968
[55] Neudecker I, Kläui M, Perzlmaier K, Backes D, Heyderman L J, Vaz C A F, Bland J A C, Rüdiger U and Back C H 2006 Phys. Rev. Lett. 96 057207
[56] Kläui M, Jubert P O, Allenspach R, Bischof A, Bland J A C, Faini G, Rüdiger U, Vaz C A F, Vila L and Vouille C 2005 Phys. Rev. Lett. 95 026601
[57] Rothman J, Kläui M, Lopez-Diaz L, Vaz C A F, Bleloch A, Bland J A C, Cui Z and Speaks R 2001 Phys. Rev. Lett. 86 1098
[58] Lua S Y H, Kushvaha S S, Wu Y H, Teo K L and Chong T C 2008 Appl. Phys. Lett. 93 122504
[59] Yang Y, Liu X, Lv Y, Herng T S, Xu X, Xia W, Zhang T, Fang J, Xiao W and Ding J 2015 Adv. Funct. Mater. 25 812
[60] Tanigaki T, Takahashi Y, Shimakura T, Akashi T, Tsuneta R, Sugawara A and Shindo D 2015 Nano Lett. 15 1309
[61] Lopez-Diaz L, Kläui M, Rothman J and Bland J A C 2002 J. Magn. Magn. Mater. 242 553
[62] Kazakova O, Hanson M, Blixt A M and Hjörvarsson B 2003 J. Magn. Magn. Mater. 258 348
[63] Fan H M, Olivo M, Shuter B, Yi J B, Bhuvaneswari R, Tan H R, Xing G C, Ng C T, Liu L, Lucky S S, Bay B H and Ding J 2010 J. Am. Chem. Soc. 132 14803
[64] Liu X L, Yang Y, Ng C T, Zhao L Y, Zhang Y, Bay B H, Fan H M and Ding J 2015 Adv. Mater. 27 1939
[65] Fan H M, You G J, Li Y, Zheng Z, Tan H R, Shen Z X, Tang S H and Feng Y P 2009 J. Phys. Chem. C 113 9928
[66] Fan H M Yi J B, Yang Y, Kho K W, Tan H R, Shen Z X, Ding J, Sun X W, Olivo M C and Feng Y P 2009 ACS Nano 3 2798
[67] Lu J, Jiao X, Chen D and Li W 2009 J. Phys. Chem. C 113 4012
[68] Chen L Q, Yang X F, Chen J, Liu J, Wu H, Zhan H, Liang C and Wu M 2010 Inorg. Chem. 49 8411
[69] Cancer: Key Facts. Retrieved 18th December 2013, from
[70] Sailor M J and Park J H 2012 Adv. Mater. 24 3779
[71] Nguyen K T 2011 J. Nanomed. Nanotechnol. 2 5
[72] Deng C L, Poggio M, Mamin H J, Rettner C T and Rugar D 2009 Proc. Natl. Acad. Sci. USA 106 1313
[73] Weissleder R and Pittet M J 2008 Nature 452 580
[74] Jun Y W, Lee J H and Cheon J 2008 Angew. Chem. Int. Ed. 47 5122
[75] Qiao R R, Yang C H and Gao M Y 2009 J. Mater. Chem. 19 6274
[76] Kim B H, Lee N, Kim H, An K, Park Y I, Choi Y, Shin K, Lee Y, Kwon S G, Na H B, Park J G, Ahn T Y, Kim Y W, Moon W K, Choi S H and Hyeon T 2011 J. Am. Chem. Soc. 133 12624
[77] Huh Y M, Jun Y, Song H T, Kim S, Choi J, Lee J H, Yoon S, Kim K S, Shin J S, Suh J S and Cheon J 2005 J. Am. Chem. Soc. 127 12387
[78] Gillis P, Moiny F and Brooks R A 2002 Magn. Reson. Med. 47 257
[79] Brooks R A, Moiny F and Gillis P 2001 Magn. Reson. Med. 45 1014
[80] Jordan A, Wust P, Fahling H, John W, Hinz A and Felix R 1993 Int. J. Hyperthermia 9 51
[81] Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
[82] Hamdan S 2013 International Journal of Chemical, Environmental & Biological Sciences 1 191
[83] Gupta A K and Gupta M 2005 Biomaterials 26 3995
[84] Paul A 2004 Nat. Biotechnol. 22 47
[85] Carrey J, Mehdaoui B and Respaud M 2011 J. Appl. Phys. 109 083921
[1] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[2] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[3] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[4] Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method
Hui Pan(潘辉), Feng Jia(贾峰), Zhen-Yu Liu(刘震宇), Maxim Zaitsev, Juergen Hennig, Jan G Korvink. Chin. Phys. B, 2018, 27(5): 050201.
[5] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[6] Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease
Ni Huang-Jing, Zhou Lu-Ping, Zeng Peng, Huang Xiao-Lin, Liu Hong-Xing, Ning Xin-Bao, the Alzheimer's Disease Neuroimaging Initiative. Chin. Phys. B, 2015, 24(7): 070502.
[7] Self-assembled superparamagnetic nanoparticles as MRI contrast agents–A review
Su Hong-Ying, Wu Chang-Qiang, Li Dan-Yang, Ai Hua. Chin. Phys. B, 2015, 24(12): 127506.
[8] Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T2*-w magnetic resonance imaging
Yu Shao-De, Wu Shi-Bin, Wang Hao-Yu, Wei Xin-Hua, Chen Xin, Pan Wan-Long, Hu Jiani, Xie Yao-Qin. Chin. Phys. B, 2015, 24(12): 128711.
[9] Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique
Li Jing, Cai Cong-Bo, Chen Lin, Chen Ying, Qu Xiao-Bo, Cai Shu-Hui. Chin. Phys. B, 2015, 24(10): 108703.
[10] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin, Yu Jing, Hou Yang-Long. Chin. Phys. B, 2015, 24(1): 014704.
[11] Formation of multifunctional Fe3O4/Au composite nanoparticles for dual-mode MR/CT imaging applications
Hu Yong, Li Jing-Chao, Shen Ming-Wu, Shi Xiang-Yang. Chin. Phys. B, 2014, 23(7): 078704.
[12] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce, Hou Yang-Long, Gao Song. Chin. Phys. B, 2014, 23(5): 057505.
[13] Parallel variable-density spiral imaging using nonlocal total variation reconstruction
Fang Sheng, Guo Hua. Chin. Phys. B, 2014, 23(5): 057401.
[14] Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer
Yue Xiu-Li, Ma Fang, Dai Zhi-Fei. Chin. Phys. B, 2014, 23(4): 044301.
[15] Multi-objective optimization of gradient coil for benchtop magnetic resonance imaging system with high-resolution
Wang Long-Qing, Wang Wei-Min. Chin. Phys. B, 2014, 23(2): 028703.
No Suggested Reading articles found!