Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 126801    DOI: 10.1088/1674-1056/24/12/126801

Electrical properties and microstructural characterization of Ni/Ta contacts to n-type 6H-SiC

Zhou Tian-Yua b, Liu Xue-Chaoa, Huang Weia, Zhuo Shi-Yia, Zheng Yan-Qinga, Shi Er-Weia
a Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China;
b Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A Ni/Ta bilayer is deposited on n-type 6H-SiC and then annealed at different temperatures to form an ohmic contact. The electrical properties are characterized by I-V curve measurement and the specific contact resistance is extracted by the transmission line method. The phase formation and microstructure of the Ni/Ta bilayer are studied after thermal annealing. The crystalline and microstructure properties are analyzed by using glance incident x-ray diffraction (GIXRD), Raman spectroscopy, and transmission electron microscopy. It is found that the transformation from the Schottky to the Ohmic occurs at 1050 ℃ and the GIXRD results show a distinct phase change from Ta2C to TaC at this temperature. A specific contact resistance of 6.5× 10-5Ω · cm2 is obtained for sample Ni(80 nm)/Ta(20 nm)/6H-SiC after being annealed at 1050 ℃. The formation of the TaC phase is regarded as the main reason for the excellent Ohmic properties of the Ni/Ta contacts to 6H-SiC. Raman and TEM data reveal that the graphite carbon is drastically consumed by the Ta element, which can improve the contact thermal stability. A schematic diagram is proposed to illustrate the microstructural changes of Ni/Ta/6H-SiC when annealed at different temperatures.
Keywords:  SiC      Ohmic contact      Ni/Ta  
Received:  21 April 2015      Revised:  28 July 2015      Published:  05 December 2015
PACS:  68.47.Fg (Semiconductor surfaces)  
  73.40.Ns (Metal-nonmetal contacts)  
Fund: Project supported by the Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W10), the Shanghai Rising-star Program, China (Grant No. 13QA1403800), the Industry-Academic Joint Technological Innovations Fund Project of Jiangsu Province, China (Grant No. BY2011119), and the National High-tech Research and Development Program of China (Grant Nos. 2013AA031603 and 2014AA032602).
Corresponding Authors:  Liu Xue-Chao     E-mail:

Cite this article: 

Zhou Tian-Yu, Liu Xue-Chao, Huang Wei, Zhuo Shi-Yi, Zheng Yan-Qing, Shi Er-Wei Electrical properties and microstructural characterization of Ni/Ta contacts to n-type 6H-SiC 2015 Chin. Phys. B 24 126801

[1] Nakamura D, Gunjishima I, Yamaguchi S, Ito T, Okamoto A, Kondo H, Onda S and Takatori K 2004 Nature 430 1009
[2] Kang M S, Ahn J J, Moon K S and Koo S M 2012 Nanoscale Res. Lett. 7 1
[3] Zhang Y, Gajjala G, Hofmann T, Weinhardt L, Bar M, Heske C, Seelmann-Eggebert M and Meisen P 2010 J. Appl. Phys. 108 093702
[4] Zhu K, Johnstone D, Leach J, Fu Y, Morkoc H, Li G and Ganguly B 2007 Superlattices Microstruct. 41 264
[5] Chen S Z and Sheng K 2014 Chin. Phys. B 23 077201
[6] Wang X D, Deng X C, Wang Y W, Wang Y, Wen Y and Zhang B 2014 Chin. Phys. B 23 057203
[7] Park J H and Holloway P H 2005 J. Vac. Sci. Technol. B 23 486
[8] Olowolafe J O, Solomon J S, Mitchel W and Lampert W V 2005 Thin Solid Films 479 59
[9] Zhang Y P, Chen Z Z, Lu W Y, Tan J H, Cheng Y and Shi W Z 2014 Chin. Phys. B 23 057303
[10] Porter L M and Davis R F 1995 Mat. Sci. Eng. B-Solid 34 83
[11] Ito K, Onishi T, Takeda H, Kohama K, Tsukimoto S, Konno M, Suzuki Y and Murakami M 2008 J. Electron. Mater. 37 1674
[12] Cole M W, Joshi P C and Ervin M 2001 J. Appl. Phys. 89 4413
[13] Roccaforte F, La Via F, Raineri V, Musumeci P, Calcagno L and Condorelli G G 2003 Appl. Phys. a-Mater. 77 827
[14] Jung K, Sutou Y and Koike J 2012 Thin Solid Films 520 6922
[15] Siad M, Abdesselam M, Souami N and Chami A C 2011 Appl. Surf. Sci. 257 10737
[16] Leroy W P, Detavernier C, Van Meirhaeghe R L and Lavoie C 2007 J. Appl. Phys. 101 053714
[17] Zhou T Y, Liu X C, Dai C C, Huang W, Zhuo S Y and Shi E W 2014 Mater. Sci. Eng. B: Adv. 188 59
[18] Jang T, Porter L M, Rutsch G W M and Odekirk B 1999 Appl. Phys. Lett. 75 3956
[19] Li R F, Guo Z N, Yang J J, Zeng X P and Yuan W X 2012 Monatsh. Chem. 143 1329
[20] Berger H H 1972 Solid-State Electron. 15 145
[21] Huang L Q, Liu B B, Zhu Q Z, Chen S H, Gao M C, Qin F W and Wang D J 2012 Appl. Phys. Lett. 100 263503
[22] Levit M, Grimberg I and Weiss B Z 1996 J. Appl. Phys. 80 167
[23] Kang C Y, Fan L L, Chen S, Liu Z L, Xu P S and Zou C W 2012 Appl. Phys. Lett. 100 251604
[24] Escobedo-Cousin E, Vassilevski K, Hopf T, Wright N, O'Neill A, Horsfall A, Goss J and Cumpson P 2013 J. Appl. Phys. 113 114309
[25] Huang L Q, Zhu Q Z, Gao M C, Qin F W and Wang D J 2012 Jpn. J. Appl. Phys. 51 081302
[26] Price D L, Cooper B R and Wills J M 1993 Phys. Rev. B 48 15311
[27] Shamuilia S, Afanasév V V, Stesmans A, Schram T and Pantisano L 2008 J. Appl. Phys. 104 073722
[1] Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST
Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽). Chin. Phys. B, 2020, 29(9): 095201.
[2] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[3] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[4] Patterns of cross-correlation in time series: A case study of gait trails
Jia Song(宋佳), Tong-Feng Weng(翁同峰), Chang-Gui Gu(顾长贵), Hui-Jie Yang(杨会杰). Chin. Phys. B, 2020, 29(8): 080501.
[5] Self-assembled vesicle-colloid hybrid swimmers: Non-reciprocal strokes with reciprocal actuation
Jaime Agudo-Canalejo, Babak Nasouri. Chin. Phys. B, 2020, 29(6): 064704.
[6] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[7] In situ luminescence measurement of 6H-SiC at low temperature
Meng-Lin Qiu(仇猛淋), Peng Yin(殷鹏), Guang-Fu Wang(王广甫), Ji-Gao Song(宋纪高), Chang-Wei Luo(罗长维), Ting-Shun Wang(王庭顺), Guo-Qiang Zhao(赵国强), Sha-Sha Lv(吕沙沙), Feng-Shou Zhang(张丰收), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 046106.
[8] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[9] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[10] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[11] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[12] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[13] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[14] Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity
Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴). Chin. Phys. B, 2020, 29(12): 120503.
[15] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
No Suggested Reading articles found!