Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046803    DOI: 10.1088/1674-1056/23/4/046803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Optical and electrical characterizations of nanoparticle Cu2S thin films

M. Saadeldina, H. S. Solimanb, H. A. M. Alib, K. Sawabya
a Physics Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
b Physics Department, Faculty of Education, Ain-Shams University, Cairo 11757, Egypt
Abstract  Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (γ-Cu2S) phase. The atomic force microscopy images indicate that the film exhibits nanoparticles with an average size of nearly 44 nm. Specrtophotometric measurements for the transmittance and reflectance are carried out at normal incidence in a spectral wavelength range of 450 nm-2500 nm. The refractive index, n, as well as the absorption index, k is calculated. Some dispersion parameters are determined. The analyses of ε1 and ε2 reveal several absorption peaks. The analysis of the spectral behavior of the absorption coefficient, α, in the absorption region reveals direct and indirect allowed transitions. The dark electrical resistivity is studied as a function of film thickness and temperature. Tellier's model is adopted for determining the mean free path and bulk resistance.
Keywords:  physical properties of Cu2S thermal evaporation      nanoparticle Cu2S thin films  
Received:  22 June 2013      Revised:  10 September 2013      Accepted manuscript online: 
PACS:  68.35.bg (Semiconductors)  
Corresponding Authors:  K.Sawaby     E-mail:  phy_kamel@yahoo.com
About author:  68.35.bg

Cite this article: 

M. Saadeldin, H. S. Soliman, H. A. M. Ali, K. Sawaby Optical and electrical characterizations of nanoparticle Cu2S thin films 2014 Chin. Phys. B 23 046803

[1] Kassim A, Min H S, Siang L K and Nagalingam A 2011 Chalcogenide Lettters 8 405
[2] Yamaamoto T, Kubota E, Taniguchi A, Dev S, Tanaka K and Osakada K 1992 Chem. Mater. 4 570
[3] Sagade A A and Sharma K 2008 Sensors and Actuators B: Chemical 133 135
[4] Allouche N K, Nasr T B, Guasch C N and Turki K 2010 Comptes Rendus Chimie 13 1364
[5] Lim Y, Ok Y W, Tark S J, KangY, Kim D and Curr 2009 Appl. Phys. 9 890
[6] Itoh K, Kuzuya T and Sumiyama K 2006 Mater. Trans. 47 1953
[7] Tolansky S 1970 Multiple-beam Interference, Microscopy of Metals, (New York: Academic Press)
[8] Shklyarevski I N, Kornveeva T I and Zozula K N 1969 Opt. Spect. 27 174
[9] El-Naggar A H 1999 J. Phys. B: Condens. Matter 11 9619
[10] El-Nahass M M 1992 J. Mater. Sci. 27 6592
[11] Bakry A M and El-NaggarA H 2000 Thin Solid Films 360 293
[12] Seraphin B O 1979 Solar Energy Conversions (Berlin, Heidelberg, New York: Spring-Verlag)
[13] Freyland W, Goltzene A, Peter Grosse and Harbeke G 1983 Physics of Non-Tetrahedrally Bonded Elements and Binary Compounds (Berlin, Heidelberg, London, New York, Tokyo: Springer Verlag) p. 137
[14] Stendal A, Bechars Wilbrand U S, Stenzel O and Von Borczskowski C 1996 J. Phys. B: At. Mol. Opt. Phys. 29 2589
[15] DiDomenico M and Wemple S H 1969 J. Appl. Phys. 40 720
[16] Wemple S H and DiDomenico M 1971 Phys. Rev. B 3 1338
[17] El-Nahass M M and Youssef T E 2010 J. Alloys Compd. 503 86
[18] Ilican S and Caglar M Y 2007 J. Opto. Electr. & Adv. Mater. 9 1414
[19] Wolaton A K and Moss T S 1963 Proc. Roy. Soc. 81 5091
[20] Rajesh K R and Menon C S 2002 Mater. Lett. 53 329
[21] Bardeen J, Blatt F J and Hall L T 1956 Photoconductivity Conf. (New York: Wiley) p. 146
[22] Tauc J, Grigorovici R and Vancu A 1996 Phys. Status Solidi B 15 627
[23] Mulder B J 1973 Phys. Status Solidi 18 633
[24] Shiozawa L R, Sullivan G A and Augustine F 1967 Clevite Corporation, Cleveland, Ohio, Contract No. AF 33 615 5224
[25] Romoin M, Sorbier J P, Bretzner J F and Martinuzzi S 1969 C. R. Acad. Sci. Ser. B 268 208
[26] Mulder B J 1973 Phys. Status Solidi A 132 79
[27] Dhumure S S and Lokhands C D 1992 Sol. Energy Mater. Sol. Cells 28 159
[28] Sondheimer E H 1952 Adv. Phys. 1 1
[29] Kimr I H 2000 Mater. Lett. 44 75
[30] Tellier C R 1978 Thin Solid Films 51 311
[1] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[2] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[3] Acetone sensors for non-invasive diagnosis of diabetes based on metal-oxide-semiconductor materials
Yujie Li(李育洁), Min Zhang(张敏), Haiming Zhang(张海明). Chin. Phys. B, 2020, 29(9): 090702.
[4] Selective linear etching of monolayer black phosphorus using electron beams
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威). Chin. Phys. B, 2020, 29(8): 086801.
[5] Studying the charge carrier properties in CuInS2 films via femtosecond transient absorption and nanosecond transient photocurrents
Mingrui Tan(谭铭瑞), Qinghui Liu(刘庆辉), Ning Sui(隋宁), Zhihui Kang(康智慧), Liquan Zhang(张里荃), Hanzhuang Zhang(张汉壮), Wenquan Wang(王文全), Qiang Zhou(周强), Yinghui Wang(王英惠). Chin. Phys. B, 2019, 28(5): 056106.
[6] PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces
San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和). Chin. Phys. B, 2019, 28(2): 026801.
[7] Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu2Te
Xiaoman Shi(史晓曼), Guoyu Wang(王国玉), Ruifeng Wang(王瑞峰), Xiaoyuan Zhou(周小元), Jingtao Xu(徐静涛), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047204.
[8] High mobility ultrathin ZnO p-n homojunction modulated by Zn0.85Mg0.15O quantum barriers
Jing-Jing Yang(杨景景), Qing-Qing Fang(方庆清), Wen-Han Du(杜文汉), Ke-Ke Zhang, Da-Shun Dong(董大舜). Chin. Phys. B, 2018, 27(3): 037804.
[9] Investigation of europium(Ⅲ)-doped ZnS for immunoassay
Chao-Fan Zhu(朱超凡), Xue Sha(沙雪), Xue-Ying Chu(楚学影), Jin-Hua Li(李金华), Ming-Ze Xu(徐铭泽), Fang-Jun Jin(金芳军), Zhi-Kun Xu(徐志堃). Chin. Phys. B, 2018, 27(2): 027803.
[10] Optical properties of phosphorene
Jiong Yang, Yuerui Lu(卢曰瑞). Chin. Phys. B, 2017, 26(3): 034201.
[11] A review for compact model of graphene field-effect transistors
Nianduan Lu(卢年端), Lingfei Wang(汪令飞), Ling Li(李泠), Ming Liu(刘明). Chin. Phys. B, 2017, 26(3): 036804.
[12] Crystallization of amorphous silicon beyond the crystallized polycrystalline silicon region induced by metal nickel
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), Man Wong(王文), Hoi-Sing Kwok(郭海成). Chin. Phys. B, 2017, 26(1): 016601.
[13] Growth condition optimization and mobility enhancement through inserting AlAs monolayer in the InP-based InxGa1-xAs/In0.52Al0.48As HEMT structures
Shu-Xing Zhou(周书星), Ming Qi(齐鸣), Li-Kun Ai(艾立鹍), An-Huai Xu(徐安怀). Chin. Phys. B, 2016, 25(9): 096801.
[14] Effects of grinding-induced grain boundary and interfaces on electrical transportation and structure phase transition in ZnSe under high pressure
Jie Yang(杨洁), Pei Wang(汪沛), Guo-Zhao Zhang(张国召), Xiao-Xue Zhou(周晓雪), Jing Li(李静), Cai-Long Liu(刘才龙). Chin. Phys. B, 2016, 25(6): 066802.
[15] Thermal effect on endurance performance of 3-dimensional RRAM crossbar array
Nianduan Lu(卢年端), Pengxiao Sun(孙鹏霄), Ling Li(李泠), Qi Liu(刘琦), Shibing Long(龙世兵), Hangbing Lv(吕杭炳), Ming Liu(刘明). Chin. Phys. B, 2016, 25(5): 056501.
No Suggested Reading articles found!