Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 088702    DOI: 10.1088/1674-1056/22/8/088702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Experimental investigations of the functional morphology of dragonfly wings

H. Rajabi, A. Darvizeh
Department of Mechanical Engineering, Faculty of Engineering, The University of Guilan, Rasht, Iran
Abstract  Nowadays, the importance of identifying the flight mechanisms of the dragonfly, as an inspiration for designing flapping wing vehicles, is well known. An experimental approach to understanding the complexities of insect wings as organs of flight could provide significant outcomes for design purposes. In this paper, a comprehensive investigation is carried out on the morphological and microstructural features of dragonfly wings. Scanning electron microscopy (SEM) and tensile testing are used to experimentally verify the functional roles of different parts of the wings. A number of SEM images of the elements of the wings, such as the nodus, leading edge, trailing edge, and vein sections, which play dominant roles in strengthening the whole structure, are presented. The results from the tensile tests indicate that the nodus might be the critical region of the wing that is subjected to high tensile stresses. Considering the patterns of the longitudinal corrugations of the wings obtained in this paper, it can be supposed that they increase the load-bearing capacity, giving the wings an ability to tolerate dynamic loading conditions. In addition, it is suggested that the longitudinal veins, along with the leading and trailing edges, are structural mechanisms that further improve fatigue resistance by providing higher fracture toughness, preventing crack propagation, and allowing the wings to sustain a significant amount of damage without loss of strength.
Keywords:  dragonfly wings      SEM      tensile test      nodus      longitudinal corrugation  
Received:  23 January 2013      Revised:  05 March 2013      Accepted manuscript online: 
PACS:  87.85.J- (Biomaterials)  
  81.05.Zx (New materials: theory, design, and fabrication)  
  87.19.R- (Mechanical and electrical properties of tissues and organs)  
  87.18.-h (Biological complexity)  
Corresponding Authors:  H. Rajabi     E-mail:  harajabi@ahrar.ac.ir

Cite this article: 

H. Rajabi, A. Darvizeh Experimental investigations of the functional morphology of dragonfly wings 2013 Chin. Phys. B 22 088702

[1] Rajabi H, Moghadami M and Darvizeh A 2011 J. Bionic Eng. 8 165
[2] Darvizeh M, Darvizeh A, Rajabi H and Rezaei A 2009 Int. J. Multiphysics 3 101
[3] Darvizeh A, Rajabi H and Khaheshi A 2011 International Bionic Engineering Conference, September 18-20, 2011, Boston, USA, p. 3
[4] Darvizeh A, Rajabi H, Khaheshi A, Etedadi J and Sobhani M K 2011 International Bionic Engineering Conference, September 18-20, 2011, Boston, USA, p. 7
[5] Darvizeh A, Rajabi H, Khaheshi A, Sobhani M K and Etedadi J 2011 International Bionic Engineering Conference, September 18-20, 2011, Boston, USA, p. 13
[6] Newman D L S and Wootton R J 1986 J. Exp. Biol. 125 361
[7] Wang X S, Li Y and Shi Y F 2008 Compos. Sci. Tech. 68 186
[8] Jongerius S R and Lentink D 2010 Exp. Mech. 50 1323
[9] Okamoto M, Yasuda K and Azuma A 1996 J. Exp. Biol. 199 281
[10] Ren H H, Wang X S, Chen Y L and Li X D 2012 Chin. Phys. B 21 034501
[11] Song F, Xiao K W, Bai K and Bai Y L 2007 Mat. Sci. Eng. A 457 254
[12] Gorb S N, Kesel A and Berger J 2000 Arth. Struct. Dev. 29 129
[13] Wan Y L, Cong Q, Wang X J and Yan Z 2008 J. Bionic Eng. 5 40
[14] Combes S A, Crall J D and Mukherjee S 2010 Biol. Lett. 6 426
[15] Sun J and Bhushan B 2012 Compt. Rend. Mec. 340 3
[16] Gorb S N, Tynkkynen K and Kotiaho J S 2009 Int. J. Odonat. 12 205
[17] Nakatani H and Hiromi K 1974 J. Biochem. 76 1343
[18] Jing Y J, Hao Y J, Qu H, Shan Y, Li D S and Du R Q 2007 Acta Biol. Hung. 58 75
[19] Kulikov S N, Tiurin Iu A, Fassakhov R S and Varlamov V P 2009 Zh. Mikrob. Epidem. Immun. 5 91
[20] Thomas M A, Walsh K A, Wolf M R, McPheron B A and Marden J H 2000 Proc. Natl. Acad. Sci. 97 13178
[21] Machida K, Oikawa T and Shimanuki J 2006 Key Eng. Mat. 326 819
[22] Li Yand and Wang X S 2008 Adv. Mater. Res. 33 785
[23] Ennos A R 2011 Solid Biomechanics (New Jersey: Princeton University Press) p. 95
[24] Wootton R J, Evans K E, Herbert R C and Smith C W 2000 J. Exp. Biol. 203 2921
[25] Newman D J S 1982 "The Functional Wing Morphology of Some Odonata", Ph. D. dissertation (Exeter: University of Exeter)
[26] Combes S A and Daniel T L 2003 J. Exp. Biol. 206 2979
[27] Combes S A and Daniel T L 2003 J. Exp. Biol. 206 2989
[28] Wootton R J 1990 Sci. Am. 263 114
[29] Kreuz P, Arnold W and Kesel A B 2001 Ann. Bio. Eng. 29 1054
[30] Wang Z J 2005 Ann. Rev. Fluid Mech. 37 183
[31] Marrocco J, Venkataraman S and Demasi L 2009 Proceeding of the Applied Computational Science and Engineering Student Support (ACSESS), March 27, 2009, San Diego, USA, p. 13
[32] Bechert D W, Meyer R and Hage W 2000 Fluids Conference and Exhibit, June 19-22, 2000, Denver, USA, p. 1
[33] Machida K and Shimanuki J 2005 Proceedings of SPIE--The International Society for Optical Engineering, Third International Conference on Experimental Mechanics and Third Conference of the Asian Committee on Experimental Mechanics, November 29, 2004 Singapore, p. 671
[34] Chapman R F 1998The Insects: Structure and Function, 4th edn. (Cambridge: Cambridge University Press) p. 788
[35] Norberg R A 1972 J. Comp. Phys. 81 9
[36] Li Z X, Wei S, Tong G S, Tian J M and Loc V Q 2009 J. Zhejiang Univ. Sci. A 10 72
[37] Sudo S, Tsuyuki K, Ikohagi T, Ohta F, Shida S and Tani J 1999 JSME Int. J. Series C 42 721
[38] DiLeo C and Deng X 2009 Adv. Robotics 23 1003
[39] Kim W K, Ko J H, Park H C and Byun D 2009 J. Theor. Biol. 260 523
[40] Ree C J C 1975 Nature 256 200
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[4] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[9] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[10] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[11] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[12] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[13] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[14] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[15] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
No Suggested Reading articles found!