Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 055202    DOI: 10.1088/1674-1056/22/5/055202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition

B. Malekynia, S. S. Razavipour
Department of Physics, Gachsaran Branch, Islamic Azad University, Gachsaran 75818-63876, Iran
Abstract  The accelerated skin layer may be used to ignite solid state fuels. The detailed analyses were clarified by solving the hydrodynamic equations for nonlinear force driven plasma block ignition. In this paper, the complementary mechanisms are included for the advanced fuel ignition: external factors such as laser, compression, shock waves, and spark. The other category is created within the plasma fusion as reheating of alpha particle, the Bremsstrahlung absorption, expansion, conduction, and shock waves generated by explosions. With the new condition for the control of shock waves, the spherical deuterium-tritium fuel density should be increased to 75 times of the solid state. The threshold ignition energy flux density for the advanced fuel ignition may be obtained using temperature equations, including the ones for the density profile obtained through the continuity equation and the expansion velocity for the r≠0 layers. These thresholds are significantly reduced in comparison with the ignition thresholds at x=0 for the solid advanced fuels. The quantum correction for the collision frequency is applied in the case of the delay in ion heating. Under the shock wave condition, the spherical proton-boron and proton-lithium fuel densities should be increased to densities 120 and 180 times of the solid state. These plasma compressions are achieved through a longer duration laser pulse or X ray.
Keywords:  block ignition      advanced fuel      quantum correction shock wave  
Received:  22 October 2012      Revised:  27 December 2012      Published:  01 April 2013
PACS:  52.38.-r (Laser-plasma interactions)  
  52.38.Dx (Laser light absorption in plasmas (collisional, parametric, etc.))  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  52.57.-z (Laser inertial confinement)  
Fund: Project supported by the Islamic Azad University of Gachsaran Branch of Iran.
Corresponding Authors:  B. Malekynia     E-mail:  b_malekynia@iaug.ac.ir

Cite this article: 

B. Malekynia, S. S. Razavipour The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition 2013 Chin. Phys. B 22 055202

[1] Atzeni S 1995 Jpn. J. Appl. Phys. 34 1986
[2] Scheffel C, Stening R J, Hora H, Höpfl R, Martinez-Val J M, Eliezer S, Kasotakis G, Piera M and Sarris E 1997 Laser and Particle Beams 15 565
[3] Yamanaka Ch 2002 Laser and Particle Beams 20 5
[4] Hora H, Miley G H, Flippo K, Lalousis P, Castillo R, Yang X, Malekynia B and Ghoranneviss M 2011 Laser and Particle Beams 29 353
[5] Malekynia B and Razavipour S S 2012 Chin. Phys. B 21 125201
[6] Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W and Solodov A A 2007 Phys. Rev. Lett. 98 155001
[7] Nuckolls J H and Wood L 2002 CA: Lawrence Livermore National Laboratory Preprint UCRL-JC-149860
[8] Badziak J 2007 Opto-electronics Review 15 1
[9] Ban H Y, Gu Y J, Kong Q, Li Y Y, Zhu Z and Kawata S 2011 Chin. Phys. Lett. 29 035202
[10] Hora H, Miley G H, Ghoranneviss M, Malekynia B, AziziN and He X T 2010 Energy Environmental Science 3 479
[11] Ghoranneviss M, Salar Elahi A, Hora H, Miley G H, Malekynia B and Abdollahi Z 2012 Laser and Particle Beams 30 459
[12] Ghoranneviss M, Salar Elahi A, Hora H and Sari A H 2012 J. Fusion Energy
[13] Chu M S 1972 Physics of Fluids 15 413
[14] Lalousis P and Hora H 1983 Laser and Particle Beams 1 283
[15] Ray P S and Hora H 1976 Nuclear Fusion 16 535
[16] Hora H and Ray P S 1978 Zeitschrift F. Naturforschung A33 890
[17] Bethe H A 1934 Handbuch der physik 24 1 497
[18] Hora H 1981 Nuovo Cimento 64B 1
[19] Malekynia B, Ghoranneviss M, Hora H and Miley G H 2009 J. Fusion Energ. 28 135
[20] Kammash T 1975 Fusion Reactor Physics: Principles and Technology (Ann Arbor: Ann Arbor Science)
[21] Niu K 1989 Nuclear Fusion (Cambridge: Cambridge University Press)
[22] Hora H, Miley G H, Azizi N, Malekynia B, Ghoranneviss M and He X T 2009 Laser and Particle Beams 27 491
[23] Fraley G S, Linnebur F J, Mason R J and Morse R L 1974 Phys. Fluids 17 474
[1] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[2] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[3] Analysis of extreme ultraviolet spectra of laser-produced Cd plasmas
Mohammedelnazier Bakhiet, Maogen Su(苏茂根), Shiquan Cao(曹世权), Qi Min(敏琦), Duixiong Sun(孙对兄), Siqi He(何思奇), Lei Wu(吴磊), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(7): 075203.
[4] The inverse Bremsstrahlung absorption in the presence of Maxwellian and non-Maxwellian electrons
Mehdi Sharifian, Fatemeh Ghoveisi, Leila Gholamzadeh, Narges Firouzi Farrashbandi. Chin. Phys. B, 2019, 28(10): 105202.
[5] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[6] Properties of long light filaments in natural environment
Shi-You Chen(陈式有), Hao Teng(滕浩), Xin Lu(鲁欣), Zong-Wei Shen(沈忠伟), Shuang Qin(秦爽), Wen-Shou Wei(魏文寿), Rong-Yi Chen(陈荣毅), Li-Ming Chen(陈黎明), Yu-Tong Li(李玉同), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(8): 085203.
[7] Laser-driven relativistic electron dynamics in a cylindrical plasma channel
Pan-Fei Geng(耿盼飞), Wen-Juan Lv(吕文娟), Xiao-Liang Li(李晓亮), Rong-An Tang(唐荣安), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2018, 27(3): 035201.
[8] Super scattering phenomenon in active spherical nanoparticles
Chang-Yu Liu(刘昌宇), Ya-Ming Xie(解亚明), Zhi-Guo Wang(王治国). Chin. Phys. B, 2017, 26(6): 067803.
[9] Dense pair plasma generation by two laser pulses colliding in a cylinder channel
Jian-Xun Liu(刘建勋), Yan-Yun Ma(马燕云), Tong-Pu Yu(余同普), Jun Zhao(赵军), Xiao-Hu Yang(杨晓虎), De-Bin Zou(邹德滨), Guo-Bo Zhang(张国博), Yuan Zhao(赵媛), Jing-Kang Yang(杨靖康), Han-Zhen Li(李汉臻), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), Shigeo Kawata. Chin. Phys. B, 2017, 26(3): 035202.
[10] Detailed calibration of the PI-LCX: 1300 high performance single photon counting hard x-ray CCD camera
Wei Hong(洪伟), Xian-Lun Wen(温贤伦), Lai Wei(魏来), Bin Zhu(朱斌), Yu-Chi Wu(吴玉迟), Ke-Gong Dong(董克攻), Chun-Ye Jiao(焦春晔), Bo Wu(伍波), Ying-Ling He(何颖玲), Fa-Qiang Zhang(张发强), Wei-Min Zhou(周维民), Yu-Qiu Gu(谷渝秋). Chin. Phys. B, 2017, 26(2): 025204.
[11] FDTD simulation study of size/gap and substrate-dependent SERS activity study of Au@SiO2 nanoparticles
Jing-Liang Yang(杨晶亮), Ruo-Ping Li(李若平), Jun-He Han(韩俊鹤), Ming-Ju Huang(黄明举). Chin. Phys. B, 2016, 25(8): 083301.
[12] Spectral modulation of third-harmonic generation by molecular alignment and preformed plasma
Min Li(李敏), An-Yuan Li(李安原), Bo-Qu He(何泊衢), Shuai Yuan(袁帅), He-Ping Zeng(曾和平). Chin. Phys. B, 2016, 25(8): 084209.
[13] Modulation of terahertz generation in dual-color filaments by an external electric field and preformed plasma
Min Li(李敏), An-Yuan Li(李安原), Bo-Qu He(何泊衢), Shuai Yuan(袁帅), He-Ping Zeng(曾和平). Chin. Phys. B, 2016, 25(4): 044209.
[14] Spectral and ion emission features of laser-produced Sn and SnO2 plasmas
Hui Lan(兰慧), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗). Chin. Phys. B, 2016, 25(3): 035202.
[15] Using a Mach–Zehnder interferometer to deduce nitrogen density mapping
F. Boudaoud, M. Lemerini. Chin. Phys. B, 2015, 24(7): 075205.
No Suggested Reading articles found!