Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050504    DOI: 10.1088/1674-1056/22/5/050504
GENERAL Prev   Next  

Exponential synchronization of coupled memristive neural networks via pinning control

Wang Guan, Shen Yi, Yin Quan
Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, Wuhan 430074, China
Abstract  This paper is concerned with the exponential synchronization problem of coupled memristive neural networks. In contrast to general neural networks, memristive neural networks exhibit state-dependent switching behaviors due to the physical properties of memristors. Under a mild topology condition, it is proved that a small fraction of controlled subsystems can efficiently synchronize the coupled systems. The pinned subsystems are identified via a search algorithm. Moreover, the information exchange network needs not to be undirected or strongly connected. Finally, two numerical simulations are performed to verify the usefulness and effectiveness of our results.
Keywords:  synchronization      memristor      coupled neural networks      pinning control  
Received:  07 September 2012      Revised:  31 October 2012      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61134012 and 11271146).
Corresponding Authors:  Shen Yi     E-mail:  yishen64@163.com

Cite this article: 

Wang Guan, Shen Yi, Yin Quan Exponential synchronization of coupled memristive neural networks via pinning control 2013 Chin. Phys. B 22 050504

[1] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[3] Itoh M and Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183
[4] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
[5] Hu J and Wang J 2010 Proceedings of the 6th IEEE World Congress on Computational Intelligence and International Joint Conference on Neural Networks, July 18-23, 2010 Barcelona, Spain, p. 1
[6] Bao B C, Liu Z and Xu J P 2010 Chin. Phys. B 19 030510
[7] Bao B C, Xu J P and Liu Z 2010 Chin. Phys. Lett. 27 070504
[8] Wen S P, Wu A L and Zeng Z G 2012 Inf. Sci. 183 106
[9] Wen S P, Zeng Z G and Huang T W 2012 Neurocomputing 97 233
[10] Fang X D, Tang Y H and Wu J J 2012 Chin. Phys. B 21 098901
[11] Zhang G D, Shen Y and Sun J W 2012 Neurocomputing 97 149
[12] Wu A L and Zeng Z G 2012 Neural Netw. 36 1
[13] Wu A L and Zeng Z G 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1919
[14] Zhou J and Huang D 2012 Chin. Phys. B 21 048401
[15] Nedaaee O E and Sahimi M 2011 Phys. Rev. E 83 031105
[16] Chua L O and Yang L 1988 IEEE Trans. Circ. Syst. 35 1257
[17] Filippov A F 1988 Differential Equations with Discontinuous Right-Hand Sides (Boston: Kluwer Academic Publishers)
[18] Forti M and Nistri P 2003 IEEE Trans. Circ. Syst. Regul. Pap. 50 1421
[19] Chang C L, Fan K W, Chung I F and Lin C T 2006 IEEE Trans. Circ. Syst. Express Briefs 53 602
[20] Cao J D, Chen G R and Li P 2008 IEEE Trans. Syst. Man Cybern. Part. B Cybern. 38 488
[21] Liu Y R, Wang Z D and Liu X H 2008 Int. J. Comput. Math. 85 1299
[22] Lu J Q, Ho D W C and Wang Z D 2009 IEEE Trans. Neural Netw. 20 1617
[23] Yang X S, Cao J D and Lu J Q 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 60
[24] Wu C 2010 IEEE Circ. Syst. Mag. 10 55
[25] Liu X Y, Chen T P, Cao J D and Lu W L 2011 Neural Netw. 24 1013
[26] Ganguli S, Huh D S and Sompolinsky H 2008 Proc. Natl. Acad. Sci. USA 105 18970
[27] Li X, Wang X F and Chen G R 2004 IEEE Trans. Circ. Syst. Regul. Pap. 51 2074
[28] Chen T P, Liu X W and Lu W L 2007 Circ. Syst. Regul. Pap. 54 1317
[29] Liu Z B, Zhang H G and Sun Q Y 2010 Chin. Phys. B 19 090506
[30] Song Q and Cao J D 2010 IEEE Trans. Circ. Syst. Regul. Pap. 57 672
[31] Li L L and Cao J D 2011 Neurocomputing 74 846
[32] Xiong W J, Ho D W C and Wang Z D 2011 IEEE Trans. Neural Netw. 22 1231
[33] Wang S G and Yao H X 2012 Chin. Phys. B 21 050508
[34] Xu J F, Min L Q and Chen G R 2004 Chin. Phys. Lett. 21 1445
[35] Xia Y H, Yang Z J and Han M A 2009 IEEE Trans. Neural Netw. 20 1165
[36] Han F L, Hu J K, Yu X H and Wang Y 2007 Appl. Math. Comput. 185 931
[37] Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506
[38] Ishii H, Tempo R and Bai E W 2012 IEEE Trans. Autom. Control 57 2703
[39] Rakkiyappan R and Balasubramaniam P 2010 Fuzzy Sets Syst. 161 1823
[40] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
[41] Watts D J and Strogatz S H 1998 Nature 393 440
[42] Massimiliano D M, Mario D B, Edmondo D T and Manfredi S 2012 IEEE Trans. Circ. Syst. Regul. Pap. 59 1029
[1] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
[2] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[3] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[4] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[5] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[6] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[7] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[8] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[9] A method of generating random bits by using electronic bipolar memristor
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮). Chin. Phys. B, 2020, 29(4): 048505.
[10] Memristor-based vector neural network architecture
Hai-Jun Liu(刘海军), Chang-Lin Chen(陈长林), Xi Zhu(朱熙), Sheng-Yang Sun(孙盛阳), Qing-Jiang Li(李清江), Zhi-Wei Li(李智炜). Chin. Phys. B, 2020, 29(2): 028502.
[11] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[12] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[13] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[14] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[15] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
No Suggested Reading articles found!