Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047101    DOI: 10.1088/1674-1056/22/4/047101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Symmetry and size effects on energy and entanglement of an exciton in coupled quantum dots

Shen Mana, Bai Yan-Kuia, An Xing-Taob, Liu Jian-Juna c
a College of Physics Science & Information Engineering and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China;
b School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China;
c Physics Department, Shijiazhuang University, Shijiazhuang 050035, China
Abstract  We study theoretically the essential properties of an exciton in vertically coupled Gaussian quantum dots in the presence of an external magnetic field. The ground state energy of a heavy-hole exciton is split into four energy levels due to the Zeeman effect. For the symmetrical system, the entanglement entropy of the exciton state can reach a value of 1. However, for a system with broken symmetry, it is close to zero. Our results are in good agreement with previous studies.
Keywords:  exciton      coupled Gaussian quantum dot      symmetry      entanglement entropy     
Received:  06 August 2012      Published:  01 March 2013
PACS:  71.35.Ji (Excitons in magnetic fields; magnetoexcitons)  
  73.21.La (Quantum dots)  
  73.22.Gk (Broken symmetry phases)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176089 and 10905016) and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011205092 and A2011208010).
Corresponding Authors:  Liu Jian-Jun     E-mail:  liujj@mail.hebtu.edu.cn

Cite this article: 

Shen Man, Bai Yan-Kui, An Xing-Tao, Liu Jian-Jun Symmetry and size effects on energy and entanglement of an exciton in coupled quantum dots 2013 Chin. Phys. B 22 047101

[1] Fält S, Atatüre M, Türeci H E, Zhao Y, Badolato A and Imamoglu A 2008 Phys. Rev. Lett. 100 106401
[2] Hewageegana P and Apalkov V 2009 Phys. Rev. B 79 115418
[3] Kolli A, Lovett B W, Benjamin S C and Stace T M 2009 Phys. Rev. B 79 035315
[4] Li J S , Li Z B and Yao D X 2012 Chin. Phys. B 21 017302
[5] Ortner G, Yugova I, Baldassarri H, von Högersthal G, Larionov A, Kurtze H, Yakovlev D R, Bayer M, Fafard S, Wasilewski Z, Hawrylak P, Lyanda-Geller Y B, Reinecke T L, Babinski A, Potemski M, Timofeev V B and Forchel A 2005 Phys. Rev. B 71 125335
[6] Cao C, Wang C and Zhang R 2012 Chin. Phys. B. 21 110305
[7] Zhang H, Wang X, Zhao J F and Liu J J 2011 Chin. Phys. B 20 127301
[8] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[9] DiVincenzo D P, Bacon D, Kempe J, Burkard G and Whaley K B 2000 Nature 408 339
[10] Loss D and Sukhorukov E V 2000 Phys. Rev. Lett. 84 1035
[11] Hawrylak P, Fafard S and Wasilewski Z R 1999 Condens. Matter News 7 16
[12] Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O and Forchel A 2001 Science 291 451
[13] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[14] Korkusinski M, Hawrylak P, Bayer M, Ortner G, Forchel A, Fafard S and Wasilewski Z 2002 Physica E 13 610
[15] Bester G, Shumway J and Zunger A 2004 Phys. Rev. Lett. 93 047401
[16] Bester G, Zunger A and Shumway J 2005 Phys. Rev. B 71 075325
[17] Ortner G, Bayer M, Lyanda-Geller Y, Reinecke T L, Kress A, Reithmaier J P and Forchel A 2005 Phys. Rev. Lett. 94 157401
[18] Stinaff E A, Scheibner M, Bracker A S, Ponomarev I V, Korenev V L, Ware M E, Doty M F, Reinecke T L and Gammon D 2006 Science 311 636
[19] Fafard S, Spanner M, McCaffrey J P and Wasilewski Z R 2000 Appl. Phys. Lett. 76 2268
[20] Zhu J L, Chu W D, Dai Z S and Xu D 2005 Phys. Rev. B 72 165346
[21] Colombelli R, Piazza V, Badolato A, Lazzarino M, Beltram F, Schoenfeld W and Petroff P 2000 Appl. Phys. Lett. 76 1146
[22] Bednarek S, Szafran B, Chwiej T and Adamowski J 2003 Phys. Rev. B 68 045328
[23] Shen M and Liu J J 2011 J. Appl. Phys. 109 094313
[24] Bayer M, Kuther A, Forchel A, Gorbunov A, Timofeev V B, Schäfer F, Reithmaier J P, Reinecke T L and Walck S N 1999 Phys. Rev. Lett. 82 1748
[1] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[2] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[3] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[4] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[5] Three-Airy autofocusing beams
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅). Chin. Phys. B, 2020, 29(6): 064204.
[6] Solid angle car following model
Dongfang Ma(马东方), Yueyi Han(韩月一), Sheng Jin(金盛). Chin. Phys. B, 2020, 29(6): 060504.
[7] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[8] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[9] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[10] Dynamic recombination of triplet excitons in polymer heterojunctions
Ya-Dong Wang(王亚东), Jian-Jun Liu(刘建军), Xi-Ru Wang(王溪如), Yan-Xia Liu(刘艳霞), and Yan Meng(孟艳). Chin. Phys. B, 2020, 29(11): 117101.
[11] Exciton dynamics in different aromatic hydrocarbon systems
Milica Rutonjski, Petar Mali, Slobodan Radošević, Sonja Gombar, Milan Pantić, Milica Pavkov-Hrvojević. Chin. Phys. B, 2020, 29(10): 107103.
[12] Linear optical approach to supersymmetric dynamics
Yong-Tao Zhan(詹颙涛), Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Wei-Wei Pan(潘维韦), Munsif Jan, Fu-Ming Chang(常弗鸣), Kai Sun(孙凯), Jin-Shi Xu(许金时), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(1): 014209.
[13] Specific heat in superconductors
Hai-Hu Wen(闻海虎). Chin. Phys. B, 2020, 29(1): 017401.
[14] Thickness-dependent excitonic properties of atomically thin 2H-MoTe2
Jin-Huan Li(李金焕), Dan Bing(邴单), Zhang-Ting Wu(吴章婷), Guo-Qing Wu(吴国庆), Jing Bai(白静), Ru-Xia Du(杜如霞), Zheng-Qing Qi(祁正青). Chin. Phys. B, 2020, 29(1): 017802.
[15] Atomic even-harmonic generation due to symmetry-breaking effects induced by spatially inhomogeneous field
Yue Guo(郭月), Aihua Liu(刘爱华), Jun Wang(王俊), Xueshen Liu(刘学深). Chin. Phys. B, 2019, 28(9): 094212.
No Suggested Reading articles found!