Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 037701    DOI: 10.1088/1674-1056/22/3/037701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Carbon materials with quasi-graphene layers: the dielectric, percolation properties and the electronic transport mechanism

Lu Ming-Minga, Yuan Jiea b, Wen Boa, Liu Jiaa, Cao Wen-Qiangb, Cao Mao-Shenga
a School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
b School of Information Engineering, Minzu University of China, Beijing 100081, China
Abstract  We investigate the dielectric properties of multi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2–20 wt.% in the frequency range of 102–107 Hz. MWCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers. Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold. Variations of dielectric properties of the composites are in agreement with the percolation theory. All the percolation phenomena are determined by hopping and migrating electrons, which are attributed to the special electronic transport mechanism of the fillers in the composites. However, the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5–10 wt.% and 15–20 wt.% in the MWCNTs/SiO2 composites, while in the graphite/SiO2 composites, there is only one percolation phenomenon in the graphite concentration of 10–15 wt.%. The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism, especially the network effect of MWCNTs in the composites. The formation of network plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.
Keywords:  multi-walled carbon nanotube      quasi-graphene layer      dielectric properties      percolation  
Received:  12 July 2012      Revised:  05 September 2012      Published:  01 February 2013
PACS:  77.22.Ch (Permittivity (dielectric function))  
  73.23.-b (Electronic transport in mesoscopic systems)  
  72.80.Tm (Composite materials)  
  72.20.Ee (Mobility edges; hopping transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972014, 51072024, and 51132002).
Corresponding Authors:  Yuan Jie     E-mail:  yuanjie4000@163.com

Cite this article: 

Lu Ming-Ming, Yuan Jie, Wen Bo, Liu Jia, Cao Wen-Qiang, Cao Mao-Sheng Carbon materials with quasi-graphene layers: the dielectric, percolation properties and the electronic transport mechanism 2013 Chin. Phys. B 22 037701

[1] Zhao D L, Li X and Shen Z M 2009 J. Alloys Compd. 471 457
[2] Zhao D L, Zhang J M, Li X and Shen Z M 2010 J. Alloys Compd. 505 712
[3] Liu X L and Zhao D L 2006 Advanced Materials Research (1st edn.) (Stafa-Zurich: Trans Tech Publications Ltd) pp. 559-562
[4] Zhao D L and Shen Z M 2003 J. Inorg. Mater. 18 1057 (in Chinese)
[5] Wang R, He F, Wan Y Z and Qi Y 2012 J. Alloys Compd. 514 35
[6] Li Y, Zhao D L, Wang Y T, Xue R S, Shen Z M and Li X G 2007 Int. J. Hydrogen Energy 32 2513
[7] Ampoumogli A, Steriotis T, Trikalitis P, Giasafaki D, Bardaji E G, Fichtner M and Charalambopoulou G 2011 J. Alloys Compd. 509 S705
[8] Zhu Y W, Murali S, Stoller M D, Ganesh K J, Cai W W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A and Ruoff R S 2011 Science 332 1537
[9] Gnanakan S R P, Karthikeyan K, Amaresh S, Cho S J, Park G J and Lee Y S 2011 J. Alloys Compd. 509 9858
[10] Yang M and Gao Q M 2011 J. Alloys Compd. 509 3690
[11] Yeh T S, Wu Y S and LeeY H 2012 J. Alloys Compd. 515 90
[12] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
[13] Wu Z C, Chen Z H, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F and Rinzler A G 2004 Science 305 1273
[14] Ekimov E A, Sidorov V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D and Stishov S M 2004 Nature 428 542
[15] Baughman R H, Zakhidov A A and de Heer W A 2002 Sience 297 787
[16] Yari M, Larijani M M, Afshar A, Eshghabadi M and Shokouhy A 2012 J. Alloys Compd. 513 135
[17] Modi A, Koratkar N, Lass E, Wei B Q and Ajayan P M 2003 Nature 424 171
[18] Abdel-Aal N, El-Tantawy F, Al-Hajry A and Bououdina M 2008 Polym. Compos. 29 804
[19] Aal N A, El-Tantawy F, Al-Hajry A and Bououdina M 2008 Polym. Compos. 29 125
[20] Chu Y H, Fu Q G, Li H J and Li K Z 2011 J. Alloys Compd. 509 8111
[21] Wang L, He F and Wan Y Z 2011 J. Alloys Compd. 509 4726
[22] Wang G S, Deng Y and Guo L 2010 Chem. Eur. J. 16 10220
[23] Cao M S, Shi X L, Fang X Y, Jin H B, Hou Z L, Zhou W and Chen Y J 2007 Appl. Phys. Lett. 91 203110
[24] Cao M S, Zhou W, Shi X L and Chen Y J 2007 Appl. Phys. Lett. 91 021912
[25] Cao M S, Song W L, Hou Z L, Wen B and Yuan J 2010 Carbon 48 788
[26] Song W L, Cao M S, Hou Z L, Fang X Y, Shi X L and Yuan J 2009 Appl. Phys. Lett. 94 233110
[27] Song W L, Cao M S, Hou Z L, Yuan J and Fang X Y 2009 Scripta Mater. 61 201
[28] Long Y Z, Li M M, Sui W M, Kong Q S and Zhang L 2009 Chin. Phys. B 18 1221
[29] Long Y Z, Yin Z H, Li M M, Gu C Z, Duvail J L, Jin A Z and Wan M X 2009 Chin. Phys. B 18 2514
[30] Luo Y P, Tien L G, Tsai C H, Lee M H and Li F Y 2011 Chin. Phys. B 20 087303
[31] Cao W Q, Lu M M, Wen B, Chen Y J, Li H B, Yuan J and Cao M S 2011 Chin. Phys. Lett. 28 107701
[32] Song W L, Wang W, Veca L M, Kong C Y, Cao M S, Wang P, Meziani M J, Qian H J, LeCroy G E, Cao L and Sun Y P 2012 J. Mater. Chem. 22 17133
[33] Kim H, Hahn H T, Viculis L M, Gilje S and Kaner R B 2007 Carbon 45 1578
[34] Weng W G, Chen G H, Wu D J, Chen X F, Lu J R and Wang P P 2004 J. Polym. Sci.,Part B: Polym. Phys. 42 2844
[35] Dang Z M, Wang L, Yin Y, Zhang Q and Lei Q Q 2007 Adv. Mater. 19 852
[36] Yao S H, Dang Z M, Jiang M J, Xu H P and Bai J B 2007 Appl. Phys. Lett. 91 212901
[37] Jiang M J, Dang Z M and Xu H P 2007 Appl. Phys. Lett. 90 042914
[38] Wang L and Dang Z M 2005 Appl. Phys. Lett. 87 042903
[39] Dang Z M, Fan L Z, Shen Y and Nan C W 2003 Mater. Sci. Eng. B 103 140
[40] Skakalova V, Kaiser A B, Woo Y S and Roth S 2006 Phys. Rev. B 74 085403
[41] Kaiser A B 2001 Adv. Mater. 13 927
[42] Kaiser A B 2001 Rep. Prog. Phys. 64 1
[43] Kaiser A B 1998 Phys. Rev. B 57 1418
[44] Nan C W 2010 Annu. Rev. Mater. Sci. Res. 40 131
[1] Crystal melting processes of propylene carbonate and 1,3-propanediol investigated by the reed-vibration mechanical spectroscopy for liquids
Li-Na Wang(王丽娜), Xing-Yu Zhao(赵兴宇), Heng-Wei Zhou(周恒为), Li Zhang(张丽), Yi-Neng Huang(黄以能). Chin. Phys. B, 2019, 28(9): 096401.
[2] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[3] Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route
Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani. Chin. Phys. B, 2019, 28(8): 088701.
[4] Structure instability-induced high dielectric properties in[001]-oriented 0.68Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 crystals
Xiao-Juan Li(李晓娟), Xing Fan(樊星), Zeng-Zhe Xi(惠增哲), Peng Liu(刘鹏), Wei Long(龙伟), Pin-Yang Fang(方频阳), Rui-Hua Nan(南瑞华). Chin. Phys. B, 2019, 28(5): 057701.
[5] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[6] The affection on the nature of percolation by concentration of pentagon-heptagon defects in graphene lattice
Yuming Yang(杨宇明), Baohua Teng(滕保华). Chin. Phys. B, 2018, 27(10): 106401.
[7] Electric current-induced giant electroresistance in La0.36Pr0.265Ca0.375MnO3 thin films
Yinghui Sun(孙颖慧), Yonggang Zhao(赵永刚), Rongming Wang(王荣明). Chin. Phys. B, 2017, 26(4): 047103.
[8] Electrical and dielectric characterization of Au/ZnO/n—Si device depending frequency and voltage
I Orak, A Kocyigit, Ş Alındal. Chin. Phys. B, 2017, 26(2): 028102.
[9] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[10] Random telegraph noise on the threshold voltage of multi-level flash memory
Yiming Liao(廖轶明), Xiaoli Ji(纪小丽), Yue Xu(徐跃), Chengxu Zhang(张城绪), Qiang Guo(郭强), Feng Yan(闫锋). Chin. Phys. B, 2017, 26(1): 018502.
[11] Temperature- and voltage-dependent trap generation model in high-k metal gate MOS device with percolation simulation
Hao Xu(徐昊), Hong Yang(杨红), Yan-Rong Wang(王艳蓉), Wen-Wu Wang(王文武), Wei-Chun Luo(罗维春), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春). Chin. Phys. B, 2016, 25(8): 087306.
[12] Structural and robustness properties of smart-city transportation networks
Zhang Zhen-Gang, Ding Zhuo, Fan Jing-Fang, Meng Jun, Ding Yi-Min, Ye Fang-Fu, Chen Xiao-Song. Chin. Phys. B, 2015, 24(9): 090201.
[13] Dielectric behaviors at microwave frequencies and Mössbauer effects of chalcedony, agate, and zultanite
Levent Parali, İsrafil Şabikoğlu, Jiri Tucek, Jiri Pechousek, Petr Novak, Jakub Navarik. Chin. Phys. B, 2015, 24(5): 059101.
[14] Electron irradiation-induced change of structure and damage mechanisms in multi-walled carbon nanotubes
Yang Jian-Qun, Li Xing-Ji, Liu Chao-Ming, Ma Guo-Liang, Gao Feng. Chin. Phys. B, 2015, 24(11): 116103.
[15] Thermal conductivity of multi-walled carbon nanotubes:Molecular dynamics simulations
Hu Guo-Jie, Cao Bing-Yang. Chin. Phys. B, 2014, 23(9): 096501.
No Suggested Reading articles found!