Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 123103    DOI: 10.1088/1674-1056/22/12/123103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ab initio MRCI+Q study on potential energy curves and spectroscopic parameters of low-lying electronic states of CS+

Li Rui (李瑞)a, Wei Chang-Li (魏长立)b, Sun Qi-Xiang (孙启响)b, Sun Er-Ping (孙二平)b, Jin Ming-Xing (金明星)b, Xu Hai-Feng (徐海峰)b, Yan Bing (闫冰)b
a Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China;
b Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  Carbon monosulfide molecular ion (CS+), which plays an important role in various research fields, has long been attracting much interest. Because of the unstable and transient nature of CS+, its electronic states have not been well investigated. In this paper, the electronic states of CS+ are studied by employing the internally contracted multireference configuration interaction method, and taking into account relativistic effects (scalar plus spin–orbit coupling). The spin–orbit coupling effects are considered via the state-interacting method with the full Breit–Pauli Hamiltonian. The potential energy curves of 18 Λ–S states correlated with the two lowest dissociation limits of CS+ molecular ion are calculated, and those of 10 lowest Ω states generated from the 6 lowest Λ–S states are also worked out. The spectroscopic constants of the bound states are evaluated, and they are in good agreement with available experimental results and theoretical values. With the aid of analysis of Λ–S composition of Ω states at different bond lengths, the avoided crossing phenomena in the electronic states of CS+ are illuminated. Finally, the single ionization spectra of CS (X1Σ+) populating the CS+(X2Σ1/2+, A2Π3/2, A2Π1/2, and B2Σ1/2+) states are simulated. The vertical ionization potentials for X2Σ1/2+, A2Π3/2, A2Π1/2, and B2Σ1/2+ states are calculated to be 11.257, 12.787, 12.827, and 15.860 eV, respectively, which are accurate compared with previous experimental results, within an error margin of 0.08 eV~0.2 eV.
Keywords:  potential energy curves      spin–orbit coupling      carbon monosulfide molecular ion (CS+)      ionization spectrum  
Received:  14 March 2013      Revised:  06 May 2013      Accepted manuscript online: 
PACS:  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
Fund: Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11034003, 11074095, and 11274140), the Natural Science Foundation of Heilongjiang Province, China (Grant No. QC2011C092), and the Scientific Research Fund of Heilongjiang Provincial Education Department, China (Grant No. 12531751).
Corresponding Authors:  Li Rui, Yan Bing     E-mail:  lirei01@163.com;yanbing@jlu.edu.cn

Cite this article: 

Li Rui (李瑞), Wei Chang-Li (魏长立), Sun Qi-Xiang (孙启响), Sun Er-Ping (孙二平), Jin Ming-Xing (金明星), Xu Hai-Feng (徐海峰), Yan Bing (闫冰) Ab initio MRCI+Q study on potential energy curves and spectroscopic parameters of low-lying electronic states of CS+ 2013 Chin. Phys. B 22 123103

[1] Frost D C, Lee S T and McDowell C A 1972 Chem. Phys. Lett. 17 153
[2] Tsuji M, Obase H and Nishimura Y 1980 J. Chem. Phys. 73 2575
[3] Larsson M 1985 Chem. Phys. Lett. 117 331
[4] Blöcker J H, Reinsch E A, Rosmus P, Werner H J and Knowles P J 1990 Chem. Phys. 147 99
[5] Dyke J M, Gamblin S D, Haggerston D, Morris A, Stranges S, West J B, Wright T G and Wright A E 1998 J. Chem. Phys. 108 6258
[6] Liu Y, Liu H, Gao H, Duan C, Hamilton P A and Davies P B 2000 Chem. Phys. Lett. 317 181
[7] Barr J D, Beeching L, De Fanis A, Dyke J M, Gamblin S D, Hooper N, Morris A, Stranges S, West J B, Wright A E and Wright T G 2000 J. Electron Spectrosc. 108 47
[8] Liu Y, Duan C, Liu J, Wu L, Xu C, Chen Y, Hamilton P A and Davies P B 2002 J. Chem. Phys. 116 9768
[9] Honjou N 2006 Chem. Phys. 324 413
[10] Honjou N 2008 Chem. Phys. 344 128
[11] Bailleux S, Walters A, Grigorova E and Margulés L 2008 Astrophys. J. 679 920
[12] Li C, Deng L, Zhang Y, Yang X and Chen Y 2010 J. Mol. Spectrosc. 264 75
[13] Liu H, Xing W, Shi D H, Zhu Z L and Sun J F 2011 Acta Phys. Sin. 60 043102 (in Chinese)
[14] Yan B and Zhang Y J 2013 Chin. Phys. B 22 023103
[15] Li R, Wei C L, Sun Q X, Sun E P, Xu H F and Yan B 2013 J. Phys. Chem. A 117 2373
[16] Ferlet R, Roueff E, Czarny J and Felenbok P 1986 Astron. Astrophys. 168 259
[17] Drdla K, Knapp G R and van Dishoeck E F 1989 Astrophys. J. 345 815
[18] Horani M and Vervloet M 1992 Astron. Astrophys. 256 683
[19] Zhang W, Xie T, Huang Y, Wang G R and Cong S L 2013 Chin. Phys. B 22 013301
[20] Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Neill D P, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone A J, Tarroni R, Thorsteinsson T and Wang M 2010 MOLPRO: A Package of ab initio Programs
[21] Kendall R A, Dunning T H and Harrison R J 1992 J. Chem. Phys. 96 6796
[22] Peterson K A and Dunning T H 2002 J. Chem. Phys. 117 10548
[23] Woon D E and Dunning T H 1993 J. Chem. Phys. 98 1358
[24] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[25] Werner H and Knowles P J 1985 J. Chem. Phys. 82 5053
[26] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[27] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[28] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[29] Douglas M and Kroll N M 1974 Ann. Phys. 82 89
[30] Hess B A 1986 Phys. Rev. A 33 3742
[31] Berning A, Schweizer M, Werner H J, Knowles P J and Palmieri P 2000 Mol. Phys. 98 1823
[32] Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (University of Waterloo, Chemical Physics Research Report CP-655)
[1] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[2] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[3] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[4] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[5] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[6] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[7] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[8] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[9] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[10] Potential energy curves and spectroscopic properties of X2Σ+ and A2Π states of 13C14N
Liao Jian-Wen (廖建文), Yang Chuan-Lu (杨传路). Chin. Phys. B, 2014, 23(7): 073401.
[11] Further investigations of the low-lying electronic states of AsO+ radical
Zhu Zun-Lue (朱遵略), Qiao Hao (乔浩), Lang Jian-Hua (郎建华), Sun Jin-Feng (孙金锋). Chin. Phys. B, 2013, 22(10): 103102.
[12] Theoretical study of potential energy curves, spectroscopic constants, and radiative lifetimes of low-lying states in SeO molecule
Li Rui (李瑞), Lian Ke-Yan (连科研), Li Qi-Nan (李奇楠), Miao Feng-Juan (苗凤娟), Yan Bing (闫冰), Jin Ming-Xing (金明星). Chin. Phys. B, 2012, 21(12): 123102.
[13] Accurate ab initio study of low-lying electronic states of phosphorus nitride radical
Wang Jie-Min(王杰敏), Sun Jin-Feng(孙金锋), and Shi De-Heng(施德恒). Chin. Phys. B, 2010, 19(11): 113404.
[14] One-colour resonant two-photon ionization spectrum of the 1-fluoronaphthalene dimer and ab initio calculation
Liu Ye-Chao(刘业超), Zhang Shu-Dong(张树东), Zhang Ming-Xia(张明霞), Sun Miao(孙淼), and Kong Xiang-He(孔祥和). Chin. Phys. B, 2009, 18(9): 3865-3869.
[15] Measurement of quantum defect of nS and nD states using field ionization spectroscopy in ultracold cesium atoms
Zhang Lin-Jie(张临杰), Feng Zhi-Gang(冯志刚), Li An-Ling(李安玲), Zhao Jian-Ming(赵建明), Li Chang-Yong(李昌勇), and Jia Suo-Tang(贾锁堂). Chin. Phys. B, 2009, 18(5): 1838-1842.
No Suggested Reading articles found!