Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 123102    DOI: 10.1088/1674-1056/22/12/123102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Structure and magnetic properties of Osn (n=11~22) clusters

Zhang Xiu-Rong (张秀荣)a, Zhang Fu-Xing (张福星)b, Chen Chen (陈晨)b, Yuan Ai-Hua (袁爱华)c
a School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
b School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
c School of Biology and Chemical Engineering, Jiangsu University of Science and Technology; Zhenjiang 212003, China
Abstract  The structure and magnetic properties of Osn (n=11~22) clusters are systematically studied by using density functional theory (DFT). For each size, the average binding energy per atom, the second-order differences of total energies and the highest occupied molecular orbital (HOMO)–the lowest unoccupied molecular orbital (LUMO) gaps are calculated to analyze the stability of the cluster. The structures of Os14 and Os18 clusters are based on a close-packed hexagonal structure, and they have maximum stabilities, so n=14, 18 are the magic numbers. The 5d electrons play a dominant role in the chemical reaction of Osn clusters. The magnetic moments of Osn clusters are quenched around n=12, and when n=18~22 the value approximates to zero, due to the difference of electron transfer.
Keywords:  density functional theory      Osn clusters      structure      magnetic properties  
Received:  09 March 2013      Revised:  25 April 2013      Accepted manuscript online: 
PACS:  31.15.E-  
  36.40.Cg (Electronic and magnetic properties of clusters)  
  36.20.Hb (Configuration (bonds, dimensions))  
  36.40.-c (Atomic and molecular clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51072072).
Corresponding Authors:  Zhang Xiu-Rong     E-mail:  zh4403701@126.com

Cite this article: 

Zhang Xiu-Rong (张秀荣), Zhang Fu-Xing (张福星), Chen Chen (陈晨), Yuan Ai-Hua (袁爱华) Structure and magnetic properties of Osn (n=11~22) clusters 2013 Chin. Phys. B 22 123102

[1] Duan H M and Zheng Q Q 2001 Phys. Lett. A 280 333
[2] Feng J N, Huang X R and Li Z S 1997 Chem. Phys. Lett. 276 334
[3] Xiao L and Wang L C 2004 J. Phys. Chem. A 108 8605
[4] Wang J G, Zhao J J, Ma L, Wang B L and Wang G H 2007 Phys. Lett. A 367 335
[5] Du J G, Sun X Y, Meng D Q, Zhang P C and Jiang G 2009 J. Chem. Phys. 131 044313
[6] Dyall K G 2000 J. Phys. Chem. A 104 4077
[7] Shafai G S, Shetty S, Krishnamurty S, Shah V and Kanhere D G 2007 J. Chem. Phys. 126 014704
[8] Ding X L, Li Z Y, Yang J L, Hou J G and Zhu Q S 2004 J. Chem. Phys. 121 2558
[9] Wang J L, Wang G H and Zhao J J 2003 Phys. Rev. A 68 013201
[10] Phaisangittisakul N, Paiboon K, Bovornratanaraks T and Pinsook U 2012 J. Nanopart. Res. 14 1020
[11] Ahrens B, Clarke L P, Feeder N, Khan M S, Li P, Martin J N and Raithby P R 2008 Inorg. Chim. Acta 361 3117
[12] Jackson S D and Walls P B 1986 Platin. Met. Rev. 30 14
[13] Zhang M, Wang M, Cui T, Ma Y M, Niu Y L and Zou G T 2008 J. Phys. Chem. Solids 69 2096
[14] Yang J W, Chen X R, Luo F and Li G F 2009 Physica B 404 3608
[15] Ji Z W, Hu C H, Wang D H, Zhong Y, Yang J, Zhang W Q and Zhou H Y 2012 Acta Mater. 60 4208
[16] Zhang X R, Cui Y N, Hong L L and Zhang W 2009 J. Mol. Sci. 25 109 (in Chinese)
[17] Zhang X R and Zhang W 2009 Journal of Jiangsu University of Science and Technology (Natural Science Edition) 23 183 (in Chinese)
[18] Zhang X R, Wu L Q and Rao Q 2011 Acta Phys. Sin. 60 083601 (in Chinese)
[19] Zhang X R, Wu L Q, Kang Z L and Tang H S 2011 Acta Phys. Sin. 60 053601 (in Chinese)
[20] Wu Z J, Han B, Dai Z W and Jin P C 2005 Chem. Phys. Lett. 403 367
[21] Chen D D, Kuang X Y, Zhao Y R, Shao P and Li Y F 2011 Chin. Phys. B 20 063601
[22] Li J, Liu X Y, Zhu Z H and Sheng Y 2012 Chin. Phys. B 21 033101
[23] Gu J B, Yang X D, Wang H Q and Li H F 2012 Chin. Phys. B 21 043102
[24] Zhang X R, Yang X and Ding X L 2012 Chin. Phys. B 21 093601
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[7] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[8] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[9] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[10] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[11] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[12] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[13] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[14] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[15] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
No Suggested Reading articles found!