Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 118701    DOI: 10.1088/1674-1056/22/11/118701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Monitoring the reaction between AlCl3 and o-xylene by using terahertz spectroscopy

Jin Wu-Jun, Li Tao, Zhao Kun, Zhao Hui
College of Science, China University of Petroleum, Beijing 102249, China
Abstract  Terahertz time-domain spectroscopy (THz-TDS) is used to study the interaction between AlCl3 and o-xylene in a temperature range from 300 K to 368 K. For comparison, the three isomers of o-, m-, and p-xylene are measured by using THz-TDS. The o-xylene carries out isomerization reaction in the presence of catalyst AlCl3. The absorption coefficient of the mixed reaction solution is extracted and analyzed in the frequency range from 0.2 THz to 1.4 THz. The temperature dependence of the absorption coefficient, which is influenced by both the dissolution of AlCl3 and the production of the two other isomer resultants, is obtained, and it can indicate the process of the isomerization reaction. The results suggest that THz spectroscopy can be used to monitor the isomerization reaction and other reactions in chemical synthesis, petrochemical and biomedical fields.
Keywords:  terahertz      ultrafast spectroscopy      absorption coefficient  
Received:  25 July 2013      Revised:  16 August 2013      Published:  28 September 2013
PACS:  87.50.ux (Therapeutic applications)  
  78.47.jh (Coherent nonlinear optical spectroscopy)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB328706), the Specially Funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ14005), the Beijing National Science Foundation, China (Grant No. 4122064), and the Science Foundation of the China University of Petroleum (Beijing) (Grant Nos. QZDX-2010-01 and KYJJ2012-06-27).
Corresponding Authors:  Zhao Kun     E-mail:  zhk@cup.edu.cn

Cite this article: 

Jin Wu-Jun, Li Tao, Zhao Kun, Zhao Hui Monitoring the reaction between AlCl3 and o-xylene by using terahertz spectroscopy 2013 Chin. Phys. B 22 118701

[1] Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q and Zhang C L 2011 Chin. Phys. B 20 010703
[2] Bao R M, Zhao K, Tian L, Zhou Q L, Shi Y L, Zhao D M, Zhang C L, Zhao H, Zhu S M, Miao Q and Lan X Y 2010 Sci. Sin. Phys. Mech. Astron. 40 950
[3] Bao R M, Wu S X, Zhao K, Zheng L J and Tian L 2012 Sci. Sin. Phys. Mech. Astron. 42 458
[4] Tian L, Zhou Q L, Jin B, Zhao K, Zhao S Q, Shi Y L and Zhang C L 2009 Sci. Sin. Phys. Mech. Astron. 39 1589
[5] Wu X J, E Y W, Xu X L and Wang L 2012 Appl. Phys. Lett. 101 033704
[6] Liu X H, Liu G F, Zhao H W, Zhang Z Y, Wei Y B, Liu M, Wen W and Zhou X T 2011 J. Phys. Chem. Solids 72 1245
[7] Fu X J, Yang G, Sun J B and Zhou J 2012 J. Phys. Chem. A 116 7314
[8] Collins D J and Scharff R P 1983 Appl. Catalysis 8 273
[9] Cho E B, Kim D, Gorka J and Jaroniec M 2009 J. Phys. Chem. C 113 5111
[10] Demirci U B, Akdim O and Miele P 2009 J. Power Sources 192 310
[11] Saidi M R, Pourshojaei Y and Aryanasab F 2009 Synthetic Commun. 39 1109
[12] Xu T, Kob N, Drago R S, Nicholas J B and Haw J F 1997 J. Am. Chem. Soc. 119 12231
[13] Zhang Z Y, Yu X H, Zhao H W, Xiao T Q, Xi Z J and Xu H J 2007 Opt. Commun. 277 273
[14] Zheng Z P, Fan W H, Yan H, Liu J, Yang W Z and Zhu S L 2012 J. Molecular Spectroscopy 281 13
[15] Upadhya P C, Shen Y C, Davies A G and Linfield E H 2003 J. Biological Phys. 29 117
[16] Al-Douseri F M, Chen Y Q and Zhang X C 2006 Inter. J. Infrared Milli. Waves 27 481
[17] Oppenheim K C, Korter T M, Melinger J S and Grischkowsky D 2010 J. Phys. Chem. A 114 12513
[18] Zhao H, Zhao K and Bao R M 2012 J. Infrared Milli. Terahz. Waves 33 522
[19] Beard M.C, Turner G M and Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146
[20] Yu B L, Yang Y, Zeng F, Xin X and Alfano R R 2005 Appl. Phys. Lett. 86 061912
[1] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[2] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[3] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[4] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[5] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[6] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[7] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[8] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[9] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[10] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[11] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[12] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[13] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[14] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[15] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
No Suggested Reading articles found!