Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030401    DOI: 10.1088/1674-1056/21/3/030401
GENERAL Prev   Next  

Energy, momentum and angular momentum in the dyadosphere of a charged spacetime in teleparallel equivalent of general relativity

Gamal G.L. Nashed
Department of Mathematics, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Mathematics Department, Faculty of Science, Ain Shams University, Cairo, Egypt; Centre for Theoretical Physics, The British University in Egypt, El-Sherouk City 11837, Egypt
Abstract  We apply the energy momentum and angular momentum tensor to a tetrad field, with two unknown functions of radial coordinate, in the framework of a teleparallel equivalent of general relativity (TEGR). The definition of the gravitational energy is used to investigate the energy within the external event horizon of the dyadosphere region for the Reissner-Nordström black hole. We also calculate the spatial momentum and angular momentum.
Keywords:  Teleparallel equivalent of general relativity      energy-momentum tensor      angular momentum tensor      angular momentum  
Received:  21 July 2011      Revised:  28 September 2011      Published:  15 February 2012
PACS:  04.20.-q (Classical general relativity)  
  04.20.Cv (Fundamental problems and general formalism)  
  04.20.Jb (Exact solutions)  
  04.50.Kd (Modified theories of gravity)  
Corresponding Authors:  Gamal G.L. Nashed,     E-mail:

Cite this article: 

Gamal G.L. Nashed Energy, momentum and angular momentum in the dyadosphere of a charged spacetime in teleparallel equivalent of general relativity 2012 Chin. Phys. B 21 030401

[1] Misner C W, Thorne K S and Wheeler J A 1973 it Gravitation (San Francisco: Freeman)
[2] Shirauji T, Nashed G G L and Kobayashi Y 1996 Prog. Theor. Phys. 96 933
[3] Kawai T, Shibata K and Tanaka I 2000 Prog. Theor. Phys. 104 505
[4] Bozhkov Y and Rodrigues W A 1995 Gen. Rel. Gravt. 27 813
[5] Itin Y 2002 Class. Quant. Grav. 19 173
[6] Itin Y 2005 J. Math. Phys. 46 012501
[7] Hehl F W, Neeman Y, Nitsch J and von der Heyde P 1978 Phys. Lett. B 78 102
[8] Hehl F W 1979 it Proceedings of the 6th. Course on Spin, Torsion and Supergravity Eric, Italy (New York: Plenum) p. 5
[9] Kawai T 1994 Phys. Rev. D 49 2862
[10] Kawai T 2000 Phys. Rev. D 62 104014
[11] Blagojevi'c M and Vasili'c M 2000 Class. Quant. Grav. 17 3785
[12] Blagojevi'c M and Nikoli'c I A 2000 Phys. Rev. D 62 024021
[13] Hehl F W, MacCrea J D, Mielke E W and Ne閙an Y 1995 Phys. Rep. 258 1
[14] Hayashi K and Shirafuji T 1979 Phys. Rev. D 19 3524
[15] Nitsch J and Hehl F W 1980 Phys. Lett. B 90 98
[16] Leclerc M 2005 Phys. Rev. D 71 027503
[17] Mielke E W 2004 Phys. Rev. D 69 128501
[18] Obukhov Y N and Pereira J G 2004 Phys. Rev. D 69 128502
[19] Obukhov Y N and Pereira J G 2003 Phys. Rev. D 67 044016
[20] Mielke E W 1990 Phys. Rev. D 42 3388
[21] Tung R S and Nester J M 1999 Phys. Rev. D 60 021501
[22] Maluf J W 1994 J. Math. Phys. 35 335
[23] Maluf J W, da Rocha-neto J F, Toribio T M L and Castello-Branco K H 2002 Phys. Rev. D 65 124001
[24] Mo ller C 1961 Ann. Phys. 12 118
[25] Mo ller C 1961 Mat. Fys. Medd. Dan. Vid. Selsk. 1 10
[26] Mo ller C 1964 Nucl. Phys. 57 330
[27] Mo ller C 1978 Mat. Fys. Medd. Dan. Vid. Selsk. 39 13
[28] Bergqvist G 1992 Class. Quant. Grav. 9 1753
[29] Christodoulou D 1970 Phys. Rev. Lett. 25 1596
[30] Ruffini R 1998 XLIX Yamada Conference on Black Holes and Highenergy Astrophysics (Tokyo: Univ. Acad. Press)
[31] Preparata G, Ruffini R and Wue S S 1998 A & A L 87 338
[32] de Lorenci A V, Figueredo N, Fliche H H and Novello M 2000 Phys. Lett. B 482 134
[33] Maluf J W, Veiga M V O and da Rocha-neto J F 2007 Gen. Relat. Grav. 39 227
[34] Kawai T and Toma N 1992 Prog. Theor. Phys. 87 583
[35] Robertson H P 1932 Ann. Math. 33 496
[36] Nashed G G L 2002 Gen. Relat. Grav. 34 1047
[37] Nashed G G L and Shirafuji T 2007 Int. J. Mod. Phys. D 16 65
[38] Dirac P A M 1964 Lectures on Quantum Mechanics Belfer Gradute School of Science (Monographs Series No. 2 (New York: Yeshiva University)
[39] Maluf J W and da Rocha-Neto J F 2001 Phy. Rev. D 64 084014
[40] Landau L D and Lifshitz E M 1980 The Classical Theory of Fields (Oxford: Pergamon Press)
[41] Maluf J W, Ulhoa S C, Faria F F and da Rocha-Neto J F 2006 Calss. Quant. Grav. 23 6245
[42] Arnowitt R, Deser S and Misner C W 1962 it Gravitation: An Introduction to Current Research (New York: Wiley)
[43] Nashed G G L 2006 Mod. Phys. Lett. A 21 2241
[44] Szabados L B 2004 it Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article Living Rev. Relativity 7, 4.
[45] Xulu S S arXive: gr-qc/0304081
[1] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[2] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[3] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[4] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[5] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[6] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[7] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[8] Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media
Jia-Wei Liu(刘佳伟), Hai-Ying Li(李海英), Wei Ding(丁炜), Lu Bai(白璐), Zhen-Sen Wu(吴振森), Zheng-Jun Li(李正军). Chin. Phys. B, 2019, 28(9): 094214.
[9] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[10] Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇). Chin. Phys. B, 2019, 28(3): 034204.
[11] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[12] Nonparaxial propagation properties of the chirped Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis
Yizuo Chen(陈奕佐), Guanwen Zhao(赵官文), Feng Ye(叶峰), Chuangjie Xu(许创杰), Dongmei Deng(邓冬梅). Chin. Phys. B, 2018, 27(10): 104201.
[13] Orbital angular momentum density and spiral spectra of Lorentz-Gauss vortex beams passing through a single slit
Zhi-Yue Ji(季志跃), Guo-Quan Zhou(周国泉). Chin. Phys. B, 2017, 26(9): 094202.
[14] Realization of quantum permutation algorithm in high dimensional Hilbert space
Dong-Xu Chen(陈东旭), Rui-Feng Liu(刘瑞丰), Pei Zhang(张沛), Yun-Long Wang(王云龙), Hong-Rong Li(李宏荣), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2017, 26(6): 060305.
[15] A new method of calculating the orbital angular momentum spectra of Laguerre-Gaussian beams in channels with atmospheric turbulence
Xiao-zhou Cui(崔小舟), Xiao-li Yin(尹霄丽), Huan Chang(常欢), Zhi-chao Zhang(张志超), Yong-jun Wang(王拥军), Guo-hua Wu(吴国华). Chin. Phys. B, 2017, 26(11): 114207.
No Suggested Reading articles found!