Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 029301    DOI: 10.1088/1674-1056/21/2/029301
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Inversion for atmosphere duct parameters using real radar sea clutter

Sheng Zheng(盛峥)a)b) and Fang Han-Xian(方涵先)a)†
a. Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101, China;
b. Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, China
Abstract  This paper addresses the problem of estimating the lower atmospheric refractivity (M profile) under nonstandard propagation conditions frequently encountered in low altitude maritime radar applications. The vertical structure of the refractive environment is modeled using five parameters and the horizontal structure is modeled using five parameters. The refractivity model is implemented with and without a priori constraint on the duct strength as might be derived from soundings or numerical weather-prediction models. An electromagnetic propagation model maps the refractivity structure into a replica field. Replica fields are compared with the observed clutter using a squared-error objective function. A global search for the 10 environmental parameters is performed using genetic algorithms. The inversion algorithm is implemented on the basis of S-band radar sea-clutter data from Wallops Island, Virginia (SPANDAR). Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (ⅰ) by comparing the propagation predicted from the radar-inferred refractivity profiles with that from the helicopter profiles, (ⅱ) by comparing the refractivity parameters from the helicopter soundings with those estimated. This technique could provide near-real-time estimation of ducting effects.
Keywords:  atmosphere duct      radar clutter      refractivity from clutter      genetic algorithm  
Received:  25 June 2011      Revised:  19 September 2011      Accepted manuscript online: 
PACS:  93.85.Ly (Exploration of oceanic structures)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41105013), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011122), and the Specialized Research Fund for State Key Laboratories, China (Grant No. 201120FSIC-03).
Corresponding Authors:  Fang Han-Xian,19994035@sina.com     E-mail:  19994035@sina.com

Cite this article: 

Sheng Zheng(盛峥) and Fang Han-Xian(方涵先) Inversion for atmosphere duct parameters using real radar sea clutter 2012 Chin. Phys. B 21 029301

[1] Patterson W 1992 Ducting Climatology Summary (San Diego: SPAWAR Sys. Cent Press)
[2] Rogers L T, Hattan C P and Stapleton J K 2000 Radio Sci. 35 955
[3] Gerstoft P, Gingras D F, Rogers L T and Hodgkiss W S 2000 IEEE Trans. Antennas Propag. 48 345
[4] Gerstoft P, Rogers L T, Krolik J K and Hodgkiss W S 2003 Radio Sci. 38 2640
[5] Barrios A 2004 Radio Sci. 39 2930
[6] Gerstoft P, Hodgkiss W S, Rogers L T and Jablecki M 2004 Radio Sci. 39 3077
[7] Yardim C, Gerstoft P and Hodgkiss W S 2006 IEEE Trans. Antennas Propag. 54 1318
[8] Vasudevan S anderson H R, Kraut S, Gerstoft P, Rogers L T and Krolik J L 2007 Radio Sci. 42 3423
[9] Yardim C, Gerstoft P and Hodgkiss W S 2007 Radio Sci. 42 3561
[10] Yardim C, Gerstoft P and Hodgkiss W S 2008 IEEE Antennas Propag. 56 1058
[11] Douvenot R, Fabbro V, Gerstoft P, Bourlier C and Saillard J 2008 Radio Sci. 43 3842
[12] Yardim C, Gerstoft P and Hodgkiss W S 2009 Radio Sci. 44 3897
[13] Sheng Z and Huang S X 2009 Acta Phys. Sin. 58 4328 (in Chinese)
[14] Sheng Z, Huang S X and Zheng G D 2009 Acta Phys. Sin. 58 4335 (in Chinese)
[15] Sheng Z, Huang S X and Zhao X F 2009 Acta Phys. Sin. 58 6627 (in Chinese)
[16] Brown G S 1998 IEEE Trans. Antennas Propag. 46 1
[17] Toporkov J V, Awadallah R S and Brown G S 1999 J. Opt. Soc. Am. 16 176
[18] West J C 2000 IEEE Trans. Geosci. Remote Sens. 38 1609
[19] Sheng Z, Huang S X and Chen L 2009 Journal of PLA University of Science and Technology 10 200 (in Chinese)
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[4] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[5] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[6] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[7] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[8] Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(8): 084202.
[9] Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(10): 104210.
[10] Broadband achromatic phase retarder based on metal-multilayer dielectric grating
Na Li(李娜), Wei-Jin Kong(孔伟金), Feng Xia(夏峰), Mao-Jin Yun(云茂金). Chin. Phys. B, 2018, 27(5): 054202.
[11] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[12] Optimization of multi-color laser waveform for high-order harmonic generation
Cheng Jin(金成), C D Lin(林启东). Chin. Phys. B, 2016, 25(9): 094213.
[13] An improved genetic algorithm with dynamic topology
Kai-Quan Cai(蔡开泉), Yan-Wu Tang(唐焱武), Xue-Jun Zhang(张学军), Xiang-Min Guan(管祥民). Chin. Phys. B, 2016, 25(12): 128904.
[14] Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations
Jian Zhong(钟剑), Gang Dong(董钢), Yimei Sun(孙一妹), Zhaoyang Zhang(张钊扬), Yuqin Wu(吴玉琴). Chin. Phys. B, 2016, 25(11): 110502.
[15] Design of ultra wideband microwave absorber effectual for objects of arbitrary shape
Gong Yuan-Xun (宫元勋), Zhou Zhong-Xiang (周忠祥), Jiang Jian-Tang (姜建堂), Zhao Hong-Jie (赵宏杰). Chin. Phys. B, 2015, 24(12): 124101.
No Suggested Reading articles found!