Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020204    DOI: 10.1088/1674-1056/21/2/020204
GENERAL Prev   Next  

An improved complex variable element-free Galerkin method for two-dimensional elasticity problems

Bai Fu-Nonga b,Li Dong-Minga b,Wang Jian-Feia b,Cheng Yu-Mina b
1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
2. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Abstract  In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFG method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.
Keywords:  meshless method      improved complex variable moving least-squares approximation      improved complex variable element-free Galerkin method      elasticity  
Received:  02 August 2011      Revised:  19 August 2011      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  46.25.-y (Static elasticity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11026223), the Shanghai Leading Academic Discipline Project, China (Grant No. S30106), and the Innovation Fund Project for Graduate Student of Shanghai University, China (Grant No. SHUCX112359).
Corresponding Authors:  Cheng Yu-Min,ymcheng@shu.edu.cn     E-mail:  ymcheng@shu.edu.cn

Cite this article: 

Bai Fu-Nong,Li Dong-Ming,Wang Jian-Fei,Cheng Yu-Min An improved complex variable element-free Galerkin method for two-dimensional elasticity problems 2012 Chin. Phys. B 21 020204

[1] Belytschko T, Krongauz Y, Organ D, Fleming M and Krysl P 1996 Comput. Methods Appl. Mech. Engin. 139 3
[2] Li S C and Cheng Y M 2005 Theor. Appl. Fracture Mech. 44 234
[3] Li S C, Cheng Y M and Li S C 2006 Acta Phys. Sin. 55 4760 (in Chinese)
[4] Qin Y X and Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese)
[5] Ren H P, Cheng Y M and Zhang W 2009 Chin. Phys. B 18 4065
[6] Wang J F, Bai F N and Cheng Y M 2011 Chin. Phys. B 20 030206
[7] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070206
[8] Lancaster P and Salkauskas K 1981 Math. Comput. 37 141
[9] Cheng Y M and Li J H 2006 Sci. Chin. Ser. G: Phys. Mech. & Astron. 49 46
[10] Liew K M, Feng C, Cheng Y M and Kitipornchai S 2007 Int. J. Num. Methods Engin. 70 46
[11] Cheng Y M, Peng M J and Li J H 2005 Acta Mech. Sin. 37 719 (in Chinese)
[12] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)
[13] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese)
[14] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090204
[15] Cheng Y M and Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese)
[16] Ren H P 2010 Researches on the Interpolating Meshless Methods Ph. D Thesis (Shanghai University) (in Chinese)
[17] Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese)
[18] Cheng R J and Cheng Y M 2011 Acta Phys. Sin. 60 070206 (in Chinese)
[19] Peng M J, Liu P and Cheng Y M 2009 Int. J. Appl. Mech. 1 367
[1] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[2] Efficiency of collective myosin Ⅱ motors studied with an elastic coupling power-stroke ratchet model
Zi-Qing Wang(汪自庆), Jin-Fang Li(李金芳), Ying-Ge Xie(解迎革), Guo-Dong Wang(王国栋), Yao-Gen Shu(舒咬根). Chin. Phys. B, 2018, 27(12): 128701.
[3] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[4] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[5] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[6] First-principles calculations of structure and elasticity of hydrous fayalite under high pressure
Chuan-Yu Zhang(张传瑜), Xu-Ben Wang(王绪本), Xiao-Feng Zhao(赵晓凤), Xing-Run Chen(陈星润), You Yu(虞游), Xiao-Feng Tian(田晓峰). Chin. Phys. B, 2017, 26(12): 126103.
[7] Enhanced effect of dimension of receptor-ligand complex and depletion effect on receptor-mediated endocytosis of nanoparticles
Ye Liu(刘野), Qingqing Gao(高庆庆), Yijun Liu(刘益军), Chuang Zhao(赵闯), Zongliang Mao(毛宗良), Lin Hu(胡林), Yanhui Liu(刘艳辉). Chin. Phys. B, 2017, 26(12): 128704.
[8] Phenomenological description of semi-soft nematic elastomers
Wen-Wen Diao(刁文文), Qing-Tian Meng(孟庆田), Fang-Fu Ye(叶方富). Chin. Phys. B, 2016, 25(6): 066103.
[9] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[10] Reflection of thermoelastic wave on the interface of isotropic half-space and tetragonal syngony anisotropic medium of classes 4, 4/m with thermomechanical effect
Nurlybek A Ispulov, Abdul Qadir, M A Shah, Ainur K Seythanova, Tanat G Kissikov, Erkin Arinov. Chin. Phys. B, 2016, 25(3): 038102.
[11] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[12] Vibration and buckling analyses of nanobeams embedded in an elastic medium
S Chakraverty, Laxmi Behera. Chin. Phys. B, 2015, 24(9): 097305.
[13] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi, Zhou Yan-Kai. Chin. Phys. B, 2015, 24(3): 030204.
[14] Homogenization theory for designing graded viscoelastic sonic crystals
Qu Zhao-Liang, Ren Chun-Yu, Pei Yong-Mao, Fang Dai-Ning. Chin. Phys. B, 2015, 24(2): 024303.
[15] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min, Liu Chao, Bai Fu-Nong, Peng Miao-Juan. Chin. Phys. B, 2015, 24(10): 100202.
No Suggested Reading articles found!