Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020203    DOI: 10.1088/1674-1056/21/2/020203
GENERAL Prev   Next  

Modified variational iteration method for an El Niño Southern Oscillation delayed oscillator

Cao Xiao-Qun(曹小群), Song Jun-Qiang(宋君强), Zhu Xiao-Qian(朱小谦), Zhang Li-Lun(张理论), Zhang Wei-Min(张卫民), and Zhao Jun(赵军)
School of Computer Science, National University of Defense Technology, Changsha 410073, China
Abstract  This paper studies a delayed air-sea coupled oscillator describing the physical mechanism of El Niño Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model.
Keywords:  air-sea coupling      nonlinear oscillator      modified variational iteration method      delayed differential equation  
Received:  19 June 2011      Revised:  11 July 2011      Accepted manuscript online: 
PACS:  02.30.Mv (Approximations and expansions)  
  04.20.Fy (Canonical formalism, Lagrangians, and variational principles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41105063 and 61070041).
Corresponding Authors:  Cao Xiao-Qun,caoxiaoqun@nudt.edu.cn     E-mail:  caoxiaoqun@nudt.edu.cn

Cite this article: 

Cao Xiao-Qun(曹小群), Song Jun-Qiang(宋君强), Zhu Xiao-Qian(朱小谦), Zhang Li-Lun(张理论), Zhang Wei-Min(张卫民), and Zhao Jun(赵军) Modified variational iteration method for an El Niño Southern Oscillation delayed oscillator 2012 Chin. Phys. B 21 020203

[1] Battisti D S and Hirst A C 1989 J. Atmos. Sci. 46 1687
[2] Bjerknes J 1969 Mon. Wea. Rev. 97 163
[3] Cane M A and Sarachik E S 1981 J. Mar. Res. bf 39 651
[4] Chao Y and Philander S G H 1993 J. Climate 6 450
[5] Hirst A C 1988 J. Atmos. Sci. 45 830
[6] Jin F F 1997 J. Atmos. Sci. 54 811
[7] Jin F F 1997b J. Atmos. Sci. 54 830
[8] Lin W T, Ji Z Z, Li S L and Yang X Z 2000 Prog. Nat. Sci. 10 936
[9] Lin W T, Ji Z Z, Wang B and Yang X Z 2000 Chin. Sci. Bull. 45 1358
[10] Lin W T, Ji Z Z and Wang B 2002 Adv. Atmos. Sci. 19 699
[11] Lin W T and Mo J Q 2004 Chin. Sci. Bull. 48 5
[12] Feng G L, Dong W J, Jia X J and Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese)
[13] Feng G L, Dai X G, Wang A H and Chou J F 2001 Acta Phys. Sin. 50 606 (in Chinese)
[14] Feng G L and Dong W J 2005 Acta Meteo. Sin. 63 864 (in Chinese)
[15] Mo J Q, Wang H, Lin W T and Lin Y H 2006 Acta Phys. Sin. 55 6 (in Chinese)
[16] Mo J Q, Wang H and Lin W T 2006 Acta Phys. Sin. bf 55 3229 (in Chinese)
[17] Mo J Q, Lin W T and Zhu J 2006 Adv. Math. bf 35 232
[18] Mo J Q and Lin W T 2005 Chin. Phys. 14 875
[19] Mo J Q, Lin Y H and Wang H 2005 Chin. Phys. 14 2387
[20] Mo J Q, Wang H, Lin W T and Lin Y H 2006 Chin. Phys. bf 15 671
[21] Mo J Q, Lin W T and Wang H 2007 Chin. Phys. 16 951
[22] Mo J Q and Lin W T 2008 Chin. Phys. B 17 370
[23] Mo J Q and Lin W T 2008 Chin. Phys. B 17 743
[24] Zhu M, Lin W T, Lin Y H and Mo J Q 2011 Acta Phys. Sin. 60 030204 (in Chinese)
[25] Mo J Q 2011 Acta Phys. Sin. 60 030203 (in Chinese)
[26] Mo J Q, Cheng R J and Ge H X 2011 Acta Phys. Sin. 60 040203 (in Chinese)
[27] Wu Q K 2011 Acta Phys. Sin. 60 068802 (in Chinese)
[28] He J H 2002 Approximate Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Publisher) (in Chinese)
[29] He J H 1997 Commun. Nonlinear Sci. Numer. Simul. 2 235
[30] He J H 1998 Comp. Meth. Appl. Mech. Eng. 167 57
[31] He J H 1999 Int. J. Nonlinear Mech. 34 699
[32] He J H 1999 Comp. Meth. Appl. Mech. Eng. 178 257
[33] He J H 2000 Int. J. Nonlinear Mech. 35 37
[34] He J H 2007 Comput. Math. Appl. 54 881
[35] Tamer A A 2007 Comput. Math. Appl. 54 955
[36] Ramos J I 2008 Appl. Math. Comput. 199 39
[37] Zhou X C, Lin Y H, Lin W T and Mo J Q 2009 Chin. Phys. B 18 4603
[38] Wang C 2001 Adv. Atmos. Sci. 18 674
[39] Feng M C 2005 Acta Sc. Nat. Univer. Sunyatseni 44 152
[40] Boutle I, Richard H S and Rudolf A R 2007 Am. J. Phys. bf 75 15
[1] A generalized Padé approximation method of solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators
Li Zhen-Bo (李震波), Tang Jia-Shi (唐驾时), Cai Ping (蔡萍). Chin. Phys. B, 2014, 23(12): 120501.
[2] High frequency forcing on nonlinear systems
Yao Cheng-Gui (姚成贵), He Zhi-Wei (何志威), Zhan Meng (占萌). Chin. Phys. B, 2013, 22(3): 030503.
[3] Bifurcations of a parametrically excited oscillator with strong nonlinearity
Tang Jia-Shi (唐驾时), Fu Wen-Bin (符文彬), Li Ke-An (李克安). Chin. Phys. B, 2002, 11(10): 1004-1007.
No Suggested Reading articles found!