Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020301    DOI: 10.1088/1674-1056/21/2/020301
GENERAL Prev   Next  

Symmetry groups and Gauss kernels of Schrödinger equations

Kang Jing(康静)a) and Qu Chang-Zheng(屈长征) b)†
a. Department of Mathematics, Northwest University, Xi'an 710069, China;
b. Department of Mathematics, Ningbo University, Ningbo 315211, China
Abstract  The relationship between symmetries and Gauss kernels for the Schrödinger equation iut=uxx+f(x)u is established. It is shown that if the Lie point symmetries of the equation are nontrivial, a classical integral transformations of the Gauss kernels can be obtained. Then the Gauss kernels of Schrödinger equations are derived by inverting the integral transformations. Furthermore, the relationship between Gauss kernels for two equations related by an equivalence transformation is identified.
Keywords:  Schr?dinger equation      symmetry group      Gauss kernel      equivalence transformation   
Received:  10 October 2011      Revised:  29 November 2011      Accepted manuscript online: 
PACS:  03.65.Fd (Algebraic methods)  
  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 10925104), the National Natural Science Foundation of China (Grant No. 11001220), and the Ph. D. Program Foundation of the Ministry of Education of China (Grant No. 20106101110008).
Corresponding Authors:  Qu Chang-Zheng,quchangzheng@nbu.edu.cn     E-mail:  quchangzheng@nbu.edu.cn

Cite this article: 

Kang Jing(康静) and Qu Chang-Zheng(屈长征) Symmetry groups and Gauss kernels of Schrödinger equations 2012 Chin. Phys. B 21 020301

[1] Hartree D 1986 Proc. Camb. Philos. Soc. 24 89
[2] Lie S 1929 Gesammelte Abhandlungen, Vierter Band: Abhandlungen zur Theorie der Differentialgleichungen (Leipzig: Teubner)
[3] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Springer)
[4] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer)
[5] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic Press)
[6] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Boston: Reidel)
[7] Dong Z Z, Chen Y and Lang Y H 2010 Chin. Phys. B 19 090205
[8] Xie Y L, Jia L Q and Yang X F 2011 Acta Phys. Sin. 60 030201 (in Chinese)
[9] Liu X M and Li Y C 2011 Acta Phys. Sin. 60 070201 (in Chinese)
[10] Galaktionov V A 1990 Diff. Int. Eqns. 3 863
[11] Galaktionov V A 1994 Nonlinear Anal. Theory, Meth. Appl. 23 1595
[12] Galaktionov V A, Dorodnytzin V A, Elenin G G, Kurdjumov S P and Samarskii A A 1988 J. Sov. Math. 41 1222
[13] Wang Y F, Lou S Y and Qian X M 2010 Chin. Phys. B 19 050202
[14] Qian S P and Tian L X 2007 Chin. Phys. 16 303
[15] Ma H C and Lou S Y 2005 Chin. Phys. 14 1495
[16] Yang Z, Ma S H and Fang J P 2011 Acta Phys. Sin. 60 040608 (in Chinese)
[17] Craddock M 1995 em J. Diff. Eqns. 116 202
[18] Craddock M 2000 em J. Diff. Eqns. 166 107
[19] Bluman G W and Cole J D 1969 J. Math. Mech. 18 1025
[20] Goard J 2006 J. Appl. Math. Decis. Sci. 2006 1
[21] Craddock M and Platen E 2004 em J. Diff. Eqns. 207 285
[22] Craddock M and Lennox K A 2007 em J. Diff. Eqns. 232 652
[23] Craddock M and Lennox K A 2009 Ann. Appl. Prob. 19 127
[24] Craddock M 2009 J. Diff. Eqns. 246 2538
[25] Craddock M and Lennox K A 2010 em Quantitative Finance Research Centre (Sydney: University of Technology) No. 274
[26] Calogero F 1991 What Is Integrability/? (Berlin: Springer) p. 1
[27] Sophocleous C 2003 Nonlinear Anal. TMA 55 441
[28] Kang J and Qu C Z 2010 Stud. Appl. Math. 124 247
[1] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[2] Solitons for the cubic–quintic nonlinear Schrödinger equation with varying coefficients
Chen Yuan-Ming(陈元明), Ma Song-Hua(马松华), and Ma Zheng-Yi(马正义) . Chin. Phys. B, 2012, 21(5): 050510.
[3] Finite symmetry transformation group of the Konopelchenko–Dubrovsky equation from its Lax pair
Hu Han-Wei(胡瀚玮) and Yu Jun(俞军) . Chin. Phys. B, 2012, 21(2): 020202.
[4] Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation
Hu Xiao-Rui(胡晓瑞), Chen Yong(陈勇), and Huang Fei(黄菲). Chin. Phys. B, 2010, 19(8): 080203.
[5] Approximate solution for the Klein-Gordon-Schr?dinger equation by the homotopy analysis method
Wang Jia(王佳), Li Biao(李彪), and Ye Wang-Chuan(叶望川). Chin. Phys. B, 2010, 19(3): 030401.
[6] Three types of generalized Kadomtsev-Petviashvili equations arising from baroclinic potential vorticity equation
Zhang Huan-Ping(张焕萍), Li Biao(李彪), Chen Yong (陈勇), and Huang Fei(黄菲). Chin. Phys. B, 2010, 19(2): 020201.
[7] Symmetry and general symmetry groups of the coupled Kadomtsev--Petviashvili equation
Wang Jia(王佳) and Li Biao(李彪). Chin. Phys. B, 2009, 18(6): 2109-2114.
[8] Multiphoton ionization of the hydrogen atom exposed to circularly or linearly polarized laser pulses
Wang Pei-Jie(王培杰) and He Feng(何峰). Chin. Phys. B, 2009, 18(12): 5291-5295.
[9] Rotating soliton clusters in nonlocal nonlinear media
Wang Yu-Qing(王玉青) and Guo Qi(郭旗). Chin. Phys. B, 2008, 17(7): 2527-2534.
[10] The classification of travelling wave solutions and superposition of multi-solutions to Camassa-- Holm equation with dispersion
Liu Cheng-Shi(刘成仕). Chin. Phys. B, 2007, 16(7): 1832-1837.
[11] Lie point symmetry algebras and finite transformation groups of the general Broer--Kaup system
Jia Man(贾曼). Chin. Phys. B, 2007, 16(6): 1534-1544.
[12] Exact periodic solution in coupled nonlinear Schrödinger equations
Li Qi-Liang(李齐良), Chen Jun-Lang(陈均朗), Sun Li-Li(孙丽丽), Yu Shu-Yi(余淑毅), and Qian Sheng(钱胜). Chin. Phys. B, 2007, 16(6): 1545-1548.
[13] New infinite-dimensional symmetry groups for the stationary axisymmetric Einstein--Maxwell equations with multiple Abelian gauge fields
Gao Ya-Jun (高亚军). Chin. Phys. B, 2006, 15(1): 66-76.
[14] Direct approach to perturbation theory for bright solitons
Yan Jia-Ren (颜家壬), Ao Sheng-Mei (敖胜美), Yu Hui-You (俞慧友). Chin. Phys. B, 2005, 14(1): 28-32.
[15] Exact solution and exotic coherent soliton structures of the (2+1)-dimensional generalized nonlinear Schrödinger equation
Zheng Chun-Long (郑春龙), Zhang Jie-Fang (张解放), Sheng Zheng-Mao (盛正茂), Huang Wen-Hua (黄文华). Chin. Phys. B, 2003, 12(1): 11-16.
No Suggested Reading articles found!