Abstract The relationship between symmetries and Gauss kernels for the Schrödinger equation iut=uxx+f(x)u is established. It is shown that if the Lie point symmetries of the equation are nontrivial, a classical integral transformations of the Gauss kernels can be obtained. Then the Gauss kernels of Schrödinger equations are derived by inverting the integral transformations. Furthermore, the relationship between Gauss kernels for two equations related by an equivalence transformation is identified.
Fund: Project supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 10925104), the National Natural Science Foundation of China (Grant No. 11001220), and the Ph. D. Program Foundation of the Ministry of Education of China (Grant No. 20106101110008).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.