Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100305    DOI: 10.1088/1674-1056/21/10/100305
GENERAL Prev   Next  

A new bipartite entangled state describing the parametric down-conversion process and its applications in quantum optics

Meng Xiang-Guoa, Wang Ji-Suoa b, Zhang Xiao-Yanc
a Department of Physics, Liaocheng University, Liaocheng 252059, China;
b Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China;
c Department of Physics, Heze University, Heze 274015, China
Abstract  We construct a new bipartite entangled state (NBES), which describes both the squeezing and the entanglement involved in the parametric down-conversion process and can be produced using a symmetric beam splitter. Constructing asymmetric ket-bra integrations based on the NBES leads to some new squeezing operators, which clearly exhibit the relationships between squeezing and entangled state transformations. Moreover, an entangled Wigner operator with a definite physical meaning is also presented.
Keywords:  new bipartite entangled state      quantum optics      beam splitter      squeezing operator      entangled Wigner operator     
Received:  16 February 2012      Published:  01 September 2012
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11147009), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2010AQ027 and ZR2012AM004), and the Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J10LA15).
Corresponding Authors:  Meng Xiang-Guo     E-mail:

Cite this article: 

Meng Xiang-Guo, Wang Ji-Suo, Zhang Xiao-Yan A new bipartite entangled state describing the parametric down-conversion process and its applications in quantum optics 2012 Chin. Phys. B 21 100305

[1] Schumaker B L and Caves C M 1985 Phys. Rev. A 31 3093
[2] Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520
[3] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[4] Fan H Y and Jiang N Q 2010 Phys. Scr. 82 055403
[5] Cochrane P T and Milburn G J 2001 Phys. Rev. A 64 062312
[6] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[7] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
[8] Preskill J 1998 Quantum Information and Computation (California: California Institute of Technology Press)
[9] Meng X G, Wang J S and Liang B L 2011 Chin. Phys. B 20 050303
[10] Hu L Y, Xue X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
[11] Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1
[12] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[13] Wigner E 1932 Phys. Rev. 40 749
[1] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[2] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[3] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[4] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[5] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[6] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[7] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[8] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[9] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[10] Controllable transmission of vector beams in dichroic medium
Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2019, 28(1): 014205.
[11] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[12] Corrections to atomic ground state energy due to interaction between atomic electric quadrupole and optical field
Jie Hu(胡洁), Yu Chen(陈宇), Yi-Xiu Bai(白伊秀), Pei-Song He(何培松), Qing Sun(孙青), An-Chun Ji(纪安春). Chin. Phys. B, 2018, 27(4): 043202.
[13] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[14] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
[15] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
No Suggested Reading articles found!