Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100304    DOI: 10.1088/1674-1056/21/10/100304
GENERAL Prev   Next  

Decoherence from a spin chain with Dzyaloshinskii–Moriya interaction

Yan Yi-Ying (颜益营), Qin Li-Guo (秦立国), Tian Li-Jun (田立君)
Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky-Moriya interaction. In the case of a two-qubit with an initial pure state, quantum correlations decay to zero at the critical point of the environment in a very short time. In the case of a two-qubit with initial mixed state, it is found that quantum discord may get maximized due to the quantum critical behavior of the environment, while entanglement vanishes under the same condition. Besides, we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment. The effects of Dzyaloshinsky-Moriya interaction on quantum correlations are considered in the two cases. The decay of quantum correlations is always strengthened by Dzyaloshinsky-Moriya interaction.
Keywords:  quantum discord      entanglement      decoherence  
Received:  21 February 2012      Revised:  06 April 2012      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11075101).
Corresponding Authors:  Tian Li-Jun     E-mail:  tianlijun@staff.shu.edu.cn

Cite this article: 

Yan Yi-Ying (颜益营), Qin Li-Guo (秦立国), Tian Li-Jun (田立君) Decoherence from a spin chain with Dzyaloshinskii–Moriya interaction 2012 Chin. Phys. B 21 100304

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[3] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[4] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[5] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[6] Brodutch A and Terno D R 2011 Phys. Rev. A 83 010301
[7] Luo S L 2008 Phys. Rev. A 77 042303
[8] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[9] Ciliberti L, Rossignoli R and Canosa N 2010 Phys. Rev. A 82 042316
[10] Maziero J, Guzman H C, Céleri L C, Sarandy M S and Serra R M 2010 Phys. Rev. A 82 012106
[11] Hassan A S M, Lari B and Joag P S 2010 J. Phys. A: Math. Theor. 43 485302
[12] Pal A K and Bose I 2011 J. Phys. B: At. Mol. Opt. Phys. 44 045101
[13] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[14] Wang Q, Liao J Q and Zeng H S 2010 Chin. Phys. B 19 100311
[15] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
[16] Vidal G, Latorre J I, Rico E and Kitaev A 2010 Phys. Rev. Lett. 90 227902
[17] Sarandy M S 2009 Phys. Rev. A 80 022108
[18] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2003 Phys. Rev. Lett. 105 095702
[19] Li Y C and Lin H Q 2011 Phys. Rev. A 83 052323
[20] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[21] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[22] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[23] Xu J S, Li C F, Zhang C J, Xu X Y, Zhang Y S and Gou G C 2010 Phys. Rev. A 82 042328
[24] Wang L C, Shen J and Yi X X 2011 Chin. Phys. B 20 050306
[25] Zhang X X and Li F L 2011 Chin. Phys. B 20 110302
[26] Hutton A and Bose S 2004 Phys. Rev. A 69 042312
[27] Cucchietti F M, Paz J P and Zurek W H 2005 Phys. Rev. A 72 052113
[28] Rossini D, Calarco T, Giovannetti V, Montangero S and Fazio R 2007 Phys. Rev. A 75 032333
[29] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[30] Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 76 042118
[31] Cheng W W and Liu J M 2009 Phys. Rev. A 79 052320
[32] Liu B Q, Shao B and Zhou J 2010 Phys. Rev. A 82 062119
[33] Moriya T 1960 Phys. Rev. 120 91
[34] Sachdev S 1999 Quantum Phase Transition (Cambridge: Cambridge University Press)
[35] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[36] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[37] Qiu L and Wang A M 2011 Phys. Scr. 84 045021
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[11] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[12] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[13] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[14] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[15] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
No Suggested Reading articles found!