Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 016501    DOI: 10.1088/1674-1056/21/1/016501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques

Zhang Yue-Fei(张跃飞)a), Wang Li(王丽)a), R. Heiderhoffb), A.~K. Geinzerb), Wei Bin(卫斌)a), Ji Yuan(吉元)a), Han Xiao-Dong(韩晓东)a)†, L.~J. Balkb), and Zhang Ze(张泽)a)c)
a Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China; b Department of Electronics, Faculty of Electrical, Information and Media Engineering, University of Wuppertal, Wuppertal D-42119, Germany; c Department of Materials Science, Zhejiang University, Hangzhou 300038, China
Abstract  The local thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the AlN sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3ω method. A thermal conductivity of 308 W/m·K within grains corresponding to that of high-purity single crystal AlN is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy.
Keywords:  thermal conductivity      AlN ceramics      scanning thermal microscopy      scanning electron microscopy  
Received:  11 March 2011      Revised:  26 July 2011      Accepted manuscript online: 
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  66.70.Df (Metals, alloys, and semiconductors)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB623702), the National Natural Science Foundation of China (Grant No. 10904001), and the Key Project Funding Scheme of Beijing Municipal Education Committee, China (Grant No

Cite this article: 

Zhang Yue-Fei(张跃飞), Wang Li(王丽), R. Heiderhoff, A. K. Geinzer, Wei Bin(卫斌), Ji Yuan(吉元), Han Xiao-Dong(韩晓东), L.J. Balk, and Zhang Ze(张泽) Local thermal conductivity of polycrystalline AlN ceramics measured by scanning thermal microscopy and complementary scanning electron microscopy techniques 2012 Chin. Phys. B 21 016501

[1] AlShaikhi A and Srivastava G P 2008 J. Appl. Phys. 103 083554
[2] Slack G A, Tanzilli R A, Pohl R O and Vandersande J W 1987 J. Phys. Chem. Solids 48 641
[3] Medraj M, Baik Y, Thompson W T and Drew R A L 2005 J. Mater. Proc. Technol. 161 415
[4] Franco J A and Shanafield D J 2004 Ceramica 50 247
[5] AlShaikhi A and Srivastava G P 2009 J. Phys.: Condens. Matter 21 174207
[6] Wang Z L, Tang D W, Jia T and Mao A M 2007 Acta Phys. Sin. 56 747 (in Chinese)
[7] Fenwick O, Bozec L, Credgington D, Hammiche A, Lazzerini G M, Silberberg Y R and Cacialli F 2009 Nat. Nanotechnol. 4 664
[8] Zhang Y F, Wang L, Ji Y, Han X D, Zhang Z, Heiderhoff R, Tiedemann A K and Balk L J 2009 IEEE Proceedings of 16th IPFA CFP09777-CDR 520
[9] Tiedemann A K, Heiderhoff R, Balk L J and Phang J C H 2009 IEEE Proceedings of 16th IPFA CFP09RPS-CDR 327
[10] Feng P and Wang T H 2003 Acta Phys. Sin. 52 2249 (in Chinese)
[11] Joachimsthaler I, Heiderhoff R and Balk L J 2003 Meas. Sci. Tech. 14 87
[12] Fiege G B M, Altes A, Heiderhoff R and Balk L J 1999 J. Phys. D: Appl. Phys. 32 13
[13] Altes A, Heiderhoff R and Balk L J 2004 J. Phys. D: Appl. Phys. 37 952
[14] Cahill D G 1990 Rev. Sci. Instrum. 61 802
[15] Watari K, Nakano H, Urabe K, Ishizaki K, Cao S and Mori K 2002 J. Mater. Res. 17 2940
[16] Lee S K, Yamda I, Kume S, Nakano H, Hatori K, Matsui G and Watari K 2008 J. Ceram. Soc. Jap. 116 1260
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Characterization of a nano line width reference material based on metrological scanning electron microscope
Fang Wang(王芳), Yushu Shi(施玉书), Wei Li(李伟), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), Shu Zhang(张树), and Xixi Yu(余茜茜). Chin. Phys. B, 2022, 31(5): 050601.
[6] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[7] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[8] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[11] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[12] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[13] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[14] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!