Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080702    DOI: 10.1088/1674-1056/20/8/080702
GENERAL Prev   Next  

High-speed polarization mode dispersion compensation in a 43-Gb/s RZ-DQPSK transmission system over 1200 km of standard single-mode fibre

Tian Fenga, Zhang Xiao-Guanga, Weng Xuana, Xi Li-Xiaa, Zhang Yang-Ana, Zhang Wen-Bob
a Key Laboratory of Information Photonics and Optical Communications of Ministry of Education, Beijing University of Posts and Telecommunications, P. O. Box 72, Beijing 100876, China; b School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China vspace1mm
Abstract  This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40 × 43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift-keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.vspace1mm
Keywords:  bit error ratio      forward error correction      optical polarization mode dispersion compensator      polarization mode dispersion tolerance  
Received:  14 May 2010      Revised:  06 January 2011      Published:  15 August 2011
PACS:  07.60.Vg (Fiber-optic instruments)  
  42.79.-e (Optical elements, devices, and systems)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.81.Gs (Birefringence, polarization)  
Fund: Project supported by the Huawei Technology Project (Grant No. YBON2008014) and the National “863” High Technology Projects (Grant No. 2009AA01Z224).

Cite this article: 

Tian Feng, Zhang Xiao-Guang, Weng Xuan, Xi Li-Xia, Zhang Yang-An, Zhang Wen-Bo High-speed polarization mode dispersion compensation in a 43-Gb/s RZ-DQPSK transmission system over 1200 km of standard single-mode fibre 2011 Chin. Phys. B 20 080702

[1] Noé R, Koch B, Mirvoda V and Sandel D 2010 it Conference on Optical Fibre Communications (OFC) paper OThJ1, San Diego, USA
[2] Schmidt B, Lowery A J and Armstrong J 2009 J. Lightw. Technol. Lett. bf 27 2792
[3] Xie C J, Liu X and Bulow H 2008 IEEE Photon. Technol. Lett. bf 20 440
[4] Tang X F, Zhang X G , Xi L X, Zhang G Y, Xiong Q J and Li X X 2010 IEEE/OSA Conference on Optical Fibre Communications (OFC) paper JWA25, San Diego, USA
[5] Safari M and Shishegar A A 2008 J. Lightw. Technol. Lett. 26 2865
[6] Xie C, Werner D, Haunstein H and Chandrasekhar S 2008 IEEE/OSA Conference on Optical Fibre Communications (OFC) paper OThU3, San Diego, USA
[7] Xie C, Chandrasekhar S, Liu X, Werner D and Haunstein H 2008 European Conference on Optical Communication (ECOC) paper We.3.E.5, Brussels, Belgium
[8] Zhang X G, Yu L, Zheng Y, Shen Y, Zhou G T, Chen L, Xi L X, Yuan T C, Zhang J Z and Yang B J 2004 Opt. Commun. 231 233
[9] Zhang X G, Zheng Y, Shen Y and Yang B J 2005 IEEE Photon. Technol. Lett. 17 85
[10] Tian F, Xi L X, Zhang X G, Weng X, Zhang G Y and Xiong Q J 2010 Chin. Opt. Lett. 8 815
[11] Zheng Y, Yu L, Yang B J and Zhang X G 2002 Acta Phys. Sin. 51 2745 (in Chinese)
[12] Lanne S and Corbel E 2004 J. Lightw. Technol. Lett. 22 1033
[13] Cai J X, Nissov M, Pilipetskii A N and Bergano N S 2008 IEEE/OSA Conference on Optical Fibre Communications (OFC), paper OThU4, San Diego, USA
[14] Zhang X G and Zheng Y 2008 Chin. Phys. B 17 2509
[15] Zhang X G, Fang G Q, Zhao X Y, Zhang W B, Xi L X, Xiong Q J, Li X X and Zhang G Y 2010 Chin. Phys. B 19 044211
[16] Zhang X G, Yu L, Zheng Y, Shen Y, Zhou G T and Yang B J 2004 IEEE/OSA Conference on Optical Fibre Communications (OFC), paper ThF1, Los Angeles, USA
[17] Xi L X, Zhang X G, Yu L, Zhou G T, Zhang N, Zhang J Z, Wu B, Yuan T C and Yang B J 2004 Chin. Opt. Lett. 2 262
[18] Sun Y Z, Chun M, Du J and Zhao B C 2010 Acta Phys. Sin. 59 3863 (in Chinese)
[19] Zhang X G, Yu L, Zhou G T, Zhang N, Shen Y, Zheng Y, Li C Y, Liu Y M, Chen L and Yang B J 2003 Chin. Opt. Lett. 1 447
[20] Tanizawa K and Hirose A 2009 IEEE Photon. Technol. Lett. 21 140
[21] Kaminow I and Li T Y 2001 Optical Fibre Telecommunications (IVB) (San Diego: Elsevier Science) p. 759
[1] Damage and recovery of fiber Bragg grating under radiation environment
Shi-Zhe Wen(温世喆), Wei-Chen Xiong(熊伟晨), Li-Ping Huang(黄力平), Zhen-Rui Wang(王镇锐), Xing-Bin Zhang(张兴斌), Zhen-Hui He(何振辉). Chin. Phys. B, 2018, 27(9): 090701.
[2] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[3] Numerical and experimental analysis of long period gratings in wavelength scale elliptical microfibers
Wa Jin(金娃), Wei-Hong Bi(毕卫红), Guang-Wei Fu(付广伟). Chin. Phys. B, 2017, 26(10): 100702.
[4] Fiber-based joint time and frequency dissemination via star-shaped commercial telecommunication network
Yi-Bo Yuan(袁一博), Bo Wang(王波), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(8): 080601.
[5] Fiber-based multiple access timing signal synchronization technique
Yi-Bo Yuan(袁一博), Bo Wang(王波), Chao Gao(高超), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(4): 040601.
[6] Fiber-based multiple-access frequency synchronization via 1f-2f dissemination
Xi Zhu(朱玺), Bo Wang(王波), Chao Gao(高超), Li-Jun Wang(王力军). Chin. Phys. B, 2016, 25(9): 090601.
[7] Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy
Xue Lu(卢雪), Min Qin(秦敏), Pin-Hua Xie(谢品华), Jun Duan(段俊), Wu Fang(方武), Liu-Yi Ling(凌六一), Lan-Lan Shen(沈兰兰), Jian-Guo Liu(刘建国), Wen-Qing Liu(刘文清). Chin. Phys. B, 2016, 25(2): 024210.
[8] Joint transfer of time and frequency signals and multi-point synchronization via fiber network
Nan Cheng(程楠), Wei Chen(陈炜), Qin Liu(刘琴), Dan Xu(徐丹), Fei Yang(杨飞), You-Zhen Gui(桂有珍), Hai-Wen Cai(蔡海文). Chin. Phys. B, 2016, 25(1): 014206.
[9] Spectral analysis of the UFBG-based acousto–optical modulatorin V-I transmission matrix formalism
Wu Liang-Ying, Pei Li, Liu Chao, Wang Yi-Qun, Weng Si-Jun, Wang Jian-Shuai. Chin. Phys. B, 2014, 23(11): 110702.
[10] Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes
Hao Yun-Qi, Ye Qing, Pan Zheng-Qing, Cai Hai-Wen, Qu Rong-Hui. Chin. Phys. B, 2014, 23(11): 110703.
[11] Eyewear-style three-dimensinal endoscope derived from microstructured polymer fiber with function of image transmission
Kong De-Peng, Wang Li-Li, He Zheng-Quan, Chu Jiu-Rong, Ma Tian. Chin. Phys. B, 2013, 22(2): 020701.
[12] Influences of semiconductor laser on fibre-optic distributed disturbance sensor based on Mach–Zehnder interferometer
Liang Sheng, Zhang Chun-Xi, Lin Bo, Lin Wen-Tai, Li Qin, Zhong Xiang, Li Li-Jing. Chin. Phys. B, 2010, 19(12): 124217.
[13] A dual-loop Sagnac interferometer
Ma Hai-Qiang, Zhao Jian-Ling, Wu Ling-An. Chin. Phys. B, 2009, 18(7): 2801-2805.
[14] Phenomena of optic-bound effect on fibre optic gyro
Song Ning-Fang, Zhang Chun-Xi, Jin Jing. Chin. Phys. B, 2007, 16(3): 735-739.
[15] A sapphire fibre thermal probe based on fast Fourier transform and phase-lock loop
Wang Yu-Tian, Wang Dong-Sheng, Ge Wen-Qian, Cui Li-Chao. Chin. Phys. B, 2006, 15(5): 975-979.
No Suggested Reading articles found!