Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014206    DOI: 10.1088/1674-1056/25/1/014206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Joint transfer of time and frequency signals and multi-point synchronization via fiber network

Nan Cheng(程楠)1, Wei Chen(陈炜)1, Qin Liu(刘琴)2, Dan Xu(徐丹)1, Fei Yang(杨飞)1, You-Zhen Gui(桂有珍)2, Hai-Wen Cai(蔡海文)1
1. Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2. Key Laboratory for Quantum Optics, CAS, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  

A system of jointly transferring time signals with a rate of 1 pulse per second (PPS) and frequency signals of 10 MHz via a dense wavelength division multiplex-based (DWDM) fiber is demonstrated in this paper. The noises of the fiber links are suppressed and compensated for by a controlled fiber delay line. A method of calibrating and characterizing time is described. The 1PPS is synchronized by feed-forward calibrating the fiber delays precisely. The system is experimentally examined via a 110 km spooled fiber in laboratory. The frequency stabilities of the user end with compensation are 1.8× 10-14 at 1 s and 2.0× 10-17 at 104 s average time. The calculated uncertainty of time synchronization is 13.1 ps, whereas the direct measurement of the uncertainty is 12 ps. Next, the frequency and 1PPS are transferred via a metropolitan area optical fiber network from one central site to two remote sites with distances of 14 km and 110 km. The frequency stabilities of 14 km link reach 3.0× 10-14 averaged in 1 s and 1.4× 10-17 in 104 s respectively; and the stabilities of 110 km link are 8.3× 10-14 and 1.7× 10-17, respectively. The accuracies of synchronization are estimated to be 12.3 ps for the 14 km link and 13.1 ps for the 110 km link, respectively.

Keywords:  joint time and frequency transfer      optical compensation      time synchronization  
Received:  23 June 2015      Revised:  02 September 2015      Accepted manuscript online: 
PACS:  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  06.30.Ft (Time and frequency)  
  07.60.Vg (Fiber-optic instruments)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61405227).

Corresponding Authors:  You-Zhen Gui, Hai-Wen Cai     E-mail:  yzgui@siom.ac.cn;hwcai@siom.ac.cn

Cite this article: 

Nan Cheng(程楠), Wei Chen(陈炜), Qin Liu(刘琴), Dan Xu(徐丹), Fei Yang(杨飞), You-Zhen Gui(桂有珍), Hai-Wen Cai(蔡海文) Joint transfer of time and frequency signals and multi-point synchronization via fiber network 2016 Chin. Phys. B 25 014206

[1] Lewandowski W, Azoubib J and Klepczynski W J 1999 Proc. IEEE 87 163
[2] Droste S, Ozimek F, Udem T, Predehl K, Hänsch T, Schnatz H, Grosche G and Holzwarth R 2013 Phys. Rev. Lett. 111 110801
[3] Lopez O, Kanj A, Pottie P, Rovera D, Achkar J, Chardonnet C, Amy-Klein A and Santarelli G 2013 Appl. Phys. B 110 3
[4] Śliwczyński L, Krehlik P, Buczek L and Lipiński M 2011 IEEE Trans. Instrum. Meas. 60 1480
[5] Krehlik P, Śliwczyński L, Buczek L and Lipiński M 2012 IEEE Trans. Instrum. Meas. 61 2844
[6] Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C and Wang L J 2012 Sci. Rep. 2 556
[7] Rost M, Fujieda M and Piester D 2010 EFTF- 2010 24th European Frequency and Time Forum, April 13-16, Noordwijk, Netherlands, p. 1
[8] Ma C Q, Wu L F, Jiang Y Y, Yu H F, Bi Z Y and Ma L S 2015 Chin. Phys. B 24 084209
[9] Yang F, Xu D, Liu Q, Cheng N, Gui Y Z and Cai H W 2013 CLEO: Lasers and Electro-Optics, June 9-14, San Jose, CA, USA, p. 1
[10] Chen W, Liu Q, Cheng N, Xu D, Yang F, Gui Y Z and Cai H W 2015 IEEE Photonics J. 7 7901609
[11] Śliwczyński L, Krehlik P and Lipiński M 2010 Meas. Sci. Technol. 21 075302
[12] Narbonneau F, Lours M, Bize S, Clairon A, Santarelli G, Lopez O, Daussy Ch., Amy-Klein A and Chardonnet Ch 2006 Rev. Sci. Inst. 77 064701
[13] Keysight Technologies “DSO91304A Infiniium High Performance Oscilloscope”
[14] JDSU “T-BERD oledR/MTS Platforms Optical Dispersion Measurement Module”
[15] Narbonneau F, Lours M, Bize S, Clairon A, Santarelli G, Lopez O, Daussy Ch., Amy-Klein A and Chardonnet Ch 2006 Rev. Sci. Inst. 77 064701
[1] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[2] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[3] Fiber-based joint time and frequency dissemination via star-shaped commercial telecommunication network
Yi-Bo Yuan(袁一博), Bo Wang(王波), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(8): 080601.
[4] Fiber-based multiple access timing signal synchronization technique
Yi-Bo Yuan(袁一博), Bo Wang(王波), Chao Gao(高超), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(4): 040601.
[5] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[6] Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs
Mohammad Pourmahmood Aghababa and Hassan Feizi . Chin. Phys. B, 2012, 21(6): 060506.
[7] A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs
Mohammad Pourmahmood Aghababa . Chin. Phys. B, 2011, 20(9): 090505.
No Suggested Reading articles found!