Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040601    DOI: 10.1088/1674-1056/26/4/040601
GENERAL Prev   Next  

Fiber-based multiple access timing signal synchronization technique

Yi-Bo Yuan(袁一博)1,3, Bo Wang(王波)1,2, Chao Gao(高超)1,2, Li-Jun Wang(王力军)1,2,3
1 Joint Institute for Measurement Science, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China;
2 Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
3 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  A fiber-based, multiple access timing signal synchronization scheme is demonstrated. By coupling out the bidirectional transmission signals, a highly stable timing signal can be recovered at arbitrary points along the fiber with the help of the loop delay message broadcasted via ethernet from the local module. The experiment is carried out on a 30-km fiber placed in a temperature-controlled box. In one-day period, when the round trip fiber transfer delay fluctuation is 60 ns, the fluctuations of the stabilized timing signal from the download and the remote modules were only ± 125 ps and ± 100 ps, respectively. Also, the system error caused by transmission path asymmetry and thermal drift is calibrated, and a 100-ps magnitude synchronization accuracy is realized. This method could provide new insights into the construction of a fiber-based time transfer network.
Keywords:  time synchronization      multiple access      time transfer  
Received:  23 September 2016      Revised:  29 November 2016      Accepted manuscript online: 
PACS:  06.30.-k (Measurements common to several branches of physics and astronomy)  
  07.60.Vg (Fiber-optic instruments)  
  06.30.Ft (Time and frequency)  
Fund: Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ09094303) and the Program of International Science and Technology Cooperation (Grant No. 2016YFE0100200).
Corresponding Authors:  Bo Wang     E-mail:

Cite this article: 

Yi-Bo Yuan(袁一博), Bo Wang(王波), Chao Gao(高超), Li-Jun Wang(王力军) Fiber-based multiple access timing signal synchronization technique 2017 Chin. Phys. B 26 040601

[1] Turner W "SKA phase 1 system (level 1) requirement specification". Available at:
[3] Lau K Y, Lutes G F and Tjoelker R L 2014 J. Lightw. Technol. 20 3440
[4] Predehl K, Grosche G, Raupach S M F, Droste S, Terra O, Alnis J, Legero T, Hänsch T W, Udem T, Holzwarth R and Schnatz H 2012 Science 336 441
[5] Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G and Holzwarth R 2013 Phys. Rev. Lett. 111 110801
[6] Foreman S M, Holman K W, Hudson D D, Jones D J and Ye J 2007 Rev. Sci. Instrum. 78 021101
[7] Williams P A, Swann W C and Newbury N R 2008 J. Opt. Soc. Am. B 25 1284
[8] Lopez O, Amy-Klein A, Lours M and Chardonnet C 2010 Appl. Phys. B 98 723
[9] Fujieda M, Kumagai M, Nagano S, Yamaguchi A, Hachisu H and Ido T 2011 Opt. Express 19 16498
[10] Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C and Wang L J 2012 Sci. Rep. 2 556
[11] Jung K, Shin J, Kang J, Hunziker S, Min C K and Kim J 2014 Opt. Lett. 39 1577
[12] Fujieda M, Kumagai M and Nagano S 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 168
[13] Gao C, Wang B, Zhu X, Yuan Y B and Wang L J 2015 Rev. Sci. Instrum. 86 093111
[14] Gao C, Wang B, Chen W L, Bai Y, Miao J, Zhu X, Li T C and Wang L J 2012 Opt. Lett. 37 4690
[15] Krehlik P Śiwczynski Ł, Buczek Ł and Lipiński M 2013 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 1804
[16] Grosche G 2014 Opt. Lett. 39 2545
[17] Zhang S and Zhao J 2015 Opt. Lett. 40 37
[18] Schediwy S W, Gozzard D, Baldwin K G H, Orr B J, Warrington R B, Aben G and Luiten A N 2013 Opt. Lett. 38 2893
[19] Zhu X, Wang B, Gao C and Wang L J 2016 Chin. Phys. B 25 090601
[20] Wang B, Zhu X, Gao C, Bai Y, Dong J W and Wang L J 2015 Sci. Rep. 5 13851
[21] Chen W, Liu Q, Cheng N, Xu D, Yang F, Gui Y Z and Cai H W 2015 IEEE Photon. J. 7 3
[22] Amemiya M, Imae M, Fujii Y, Suzuyama T and Ohshima S 2005 IEEE Trans. Fundam. Mater. 126 914
[23] Piester D, Rost M, Fujieda M, Feldmann T and Bauch A 2011 Adv. Radio Sci. 9 1
[24] Rost M, Piester D, Yang W, Feldmann T, Wübbena T and Bauch A 2012 Metrologia 49 772
[25] Smotlacha V, Kuna A and Mache W, in 24th European Frequency and Time Forum, 13-16 April, 2010, Noordwijk, the Netherlands, (IEEE, New York) pp. 1-8
[26] Wu G L, Hu L, Zhang H and Chen J P 2014 Rev. Sci. Instrum. 85 114701
[27] Celano T P, Stein S R, Measander B A and Ramsey B J in Proceedings of the 2002 IEEE International Frequency Control Symposium, Miami, America, May 29-31, 2002 (IEEE, New York) pp. 510-516
[28] Kim J, Cox J A, Chen J and Kartner F X 2008 Nat. Photon. 2 733
[29] Śiwczynski L, Krehlik P and Lipiński M 2010 Meas. Sci. Technol. 21 075302
[30] Krehlik P, Śiwczynski L, Buczek L and Lipiński M 2012 IEEE Trans. Instrum. Meas. 61 2844
[31] Ning B, Zhang S Y, Hou D, Wu J T Li Z B and Zhao J Y 2014 Sci. Rep. 4 5109
[32] Peng M Y, Callahan P T, Nejadmalayeri A H, Valente S, Xin M, Gruner-Nielsen L, Monberg E M, Yan M, Fini J M and Kartner F X 2013 Opt. Express 21 19982
[33] Jiang Z, Dai Y T, Zhang A X, Yin F F, Li J Q, Xu K, Lv Q, Ren T P and Tang G S 2015 IEEE Photon. J. 7 2
[34] Śiwczynski Ł and Krehlik P 2015 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62 412
[35] Chen X, Zhang J, Lu J L, Lu X, Tian X S, Liu B, Wu H, Tang T S, Shi K B and Zhang Z G 2015 Opt. Lett. 40 371
[36] Chen X, Lu J L, Cui Y F, Zhang J, Lu X, Tian X S, Ci C, Liu B, Wu H, Tang T S, Shi K B and Zhang Z G 2014 Sci. Rep. 5 18343
[1] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[2] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[3] Fiber-based joint time and frequency dissemination via star-shaped commercial telecommunication network
Yi-Bo Yuan(袁一博), Bo Wang(王波), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(8): 080601.
[4] Performance analysis of quantum access network using code division multiple access model
Linxi Hu(胡林曦), Can Yang(杨灿), Guangqiang He(何广强). Chin. Phys. B, 2017, 26(6): 060304.
[5] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[6] Joint transfer of time and frequency signals and multi-point synchronization via fiber network
Nan Cheng(程楠), Wei Chen(陈炜), Qin Liu(刘琴), Dan Xu(徐丹), Fei Yang(杨飞), You-Zhen Gui(桂有珍), Hai-Wen Cai(蔡海文). Chin. Phys. B, 2016, 25(1): 014206.
[7] Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs
Mohammad Pourmahmood Aghababa and Hassan Feizi . Chin. Phys. B, 2012, 21(6): 060506.
[8] A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs
Mohammad Pourmahmood Aghababa . Chin. Phys. B, 2011, 20(9): 090505.
[9] Statistical-mechanical analysis of multiuser channel capacity with imperfect channel state information
Wang Hui-Song (汪辉松), Zeng Gui-Hua (曾贵华). Chin. Phys. B, 2008, 17(12): 4451-4457.
No Suggested Reading articles found!