Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080201    DOI: 10.1088/1674-1056/20/8/080201
GENERAL   Next  

Robust stability analysis of Takagi–Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays

M. Syed Ali
Department of Mathematics, Thiruvalluvar University, Vellore-632 106, Tamilnadu, India
Abstract  In this paper, the global stability of Takagi—Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature.
Keywords:  recurrent neural networks      linear matrix inequality      Lyapunov stability      time-varying delays      TS fuzzy model  
Received:  05 January 2011      Revised:  05 January 2011      Accepted manuscript online: 
PACS:  02.30.Ks (Delay and functional equations)  
  02.30.Sa (Functional analysis)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.40.Vh (Global analysis and analysis on manifolds)  

Cite this article: 

M. Syed Ali Robust stability analysis of Takagi–Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays 2011 Chin. Phys. B 20 080201

[1] Cao J and Wang J 2005 IEEE Trans. Circ. Syst. I 52 920
[2] Cao J and Wang J 2005 IEEE Trans. Circ. Syst. I 52 417
[3] Chen T P 2001 Neural Netw. 14 977
[4] Liang J and Cao J 2003 Phys. Lett. A 318 53
[5] Zhang H 2007 IEEE Trans. Circ. Syst. II: Exp. Briefs 54 730
[6] Arik S 2002 IEEE Trans. Circ. Syst. I 49 1211
[7] Arik S and Tavsanoglu V 2000 IEEE Trans. Circ. Syst. I 47 571
[8] da Silva I N, Caradori W, do Amaral and de Arruda L V 2007 Appl. Math. Model. 31 78
[9] Qiu F, Cui B and Wu W Appl. Math. Model. in press
[10] Liao X F, Wang K W and Li C G 2004 Nonlinear Anal.: Real World Appl. 5 527
[11] Lien C H and Chung L Y 2007 Chaos, Solitons and Fractals 34 1213
[12] Liu Y R, Wang Z D and Liu X 2006 Neural Netw. 19 667
[13] Liu Y R, Wang Z D and Liu X 2008 Nonlinear Anal. Hybrid Systems 2 110
[14] Mohamad S, Gopalsamy K and Akqa H Nonlinear Anal.: Real World Appl. 9 872
[15] Nie X and Cao J 2009 Nonlinear Anal.: Real World Appl. 10 928
[16] Wang Z, Liu Y, Li M and Liu X 2006 IEEE Trans. Neural Netw. 17 814
[17] Takagi T and Sugeno M 1985 IEEE Trans. Syst. Man, Cybern. 15 116
[18] Cao Y and Frank P 2001 Fuzzy Sets Systems 124 213
[19] Takagi T and Sugeno M 1993 Fuzzy Sets and Systems 45 135
[20] Cao S, Rees N and Feng G 1996 Int. J. Control 64 1069
[21] Cao S, Rees N and Feng G 1997 Automatica 33 1017
[22] Han M, Sun Y and Fan Y 2008 Expert Syst. Appl. 34 2905
[23] Hou Y Y, Liao T L and Yan Y Y 2007 IEEE Trans. Syst. Man Cybrn. Part B 37 720
[24] Huang H, Ho D and Lam J 2005 IEEE Trans. Circ. Syst. II: Exp. Briefs 52 251
[25] Liu B and Shi P Phys. Lett. A in press
[26] Lou X and Cui B 2007 Fuzzy Sets and Systems 158 2746
[27] Ali S M and Balasubramaniam P 2008 Phys. Lett. A 372 5159
[28] Ali S M and Balasubramaniam P Expert Syst. Appl. in press
[29] Wang Z and Qiao H 2002 IEEE Trans. Signal Process. 50 560
[30] Yu W and Yao L 2007 J. Comput. Appl. Math. 206 679
[31] Gahinet P, Nemirovski A, Laub A and Chilali M 1995 LMI Control Toolbox User's Guide (Massachusetts: The Mathworks)
[32] Li T, Luo Q, Sun C and Zhang B Nonlinear Anal.: Real World Appl. in press
[33] Ma K, Yu L and Cheng W Neurocomputing in press
[34] Boyd B, Ghoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadephia: SIAM)
[35] Cao J, Yuan K and Li H X 2006 IEEE Trans. Neural Netw. 17 1646
[36] Wang Y, Xie L and de Souza C E 1992 Systems Control Lett. 19 139
[37] Mao X, Koroleva N and Rodkina A 1998 Systems Control. Lett. 35 325
[38] Gu K, Kharitonov V L and Chen J 2003 Stability of Time Delay Systems (Boston: Birkhuser)
[39] Chen W, Guan Z and Lu X 2005 Syst. Control Lett. 54 547
[1] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[2] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[3] Intra-layer synchronization in duplex networks
Jie Shen(沈洁), Longkun Tang(汤龙坤). Chin. Phys. B, 2018, 27(10): 100503.
[4] Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor—actuator networks
Jian-Zhong Zhang(张建中), Bao-Tong Cui(崔宝同), Bo Zhuang(庄波). Chin. Phys. B, 2017, 26(9): 090201.
[5] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[6] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[7] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[8] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[9] Exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and mode-dependent probabilistic time-varying delays
R. Rakkiyappan, N. Sakthivel, S. Lakshmanan. Chin. Phys. B, 2014, 23(2): 020205.
[10] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[11] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[12] Stability analysis and control synthesis of uncertain Roesser-type discrete-time two-dimensional systems
Wang Jia (王佳), Hui Guo-Tao (会国涛), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2013, 22(3): 030206.
[13] H synchronization of chaotic neural networks with time-varying delays
O. M. Kwon, M. J. Park, Ju H. Park, S. M. Lee, E. J. Cha. Chin. Phys. B, 2013, 22(11): 110504.
[14] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[15] Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays
M. Syed Ali . Chin. Phys. B, 2012, 21(7): 070207.
No Suggested Reading articles found!