Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 047104    DOI: 10.1088/1674-1056/20/4/047104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Lasing behaviour from the condensation of polaronic excitons in a ZnO nanowire

Liu Rui-Bin(刘瑞斌) and Zou Bing-Suo(邹炳锁)
Nanophotonics Laboratory, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  Atoms under optical and magnetic trapping in a limited space at a very low temperature can lead to Bose-Einstein condensation (BEC), even in a one-dimensional (1D) optical lattice. However, can the confinment of dense excitons in a 1D semiconductor microstructure easily reach the excitonic BEC? A lightly Mn(II)-doped ZnO nanowire under a femtosecond laser pulse pump at room temperature produces single-mode lasing from coherent bipolaronic excitons, which is much like a macroscopic quantum state due to the condensation of the bipoaronic excitons if not real BEC. In this process, longitudinal biphonon binding with the exciton plays an important role. We revisit this system and propose possibility of bipolaronic exciton condensation. More studies are needed for this condensation phenomenon in 1D microcavity systems.
Keywords:  Bose–Einstein condensation      exciton      biphonon      ZnO nanowire  
Received:  20 September 2010      Revised:  12 November 2010      Accepted manuscript online: 
PACS:  71.35.Lk (Collective effects (Bose effects, phase space filling, and excitonic phase transitions))  
  71.55.Gs (II-VI semiconductors)  
  72.80.Ey (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 90606001,20873039, and 51002011) and the Excellent Young Scholars Research Fund of Beijing Institute of Technology.

Cite this article: 

Liu Rui-Bin(刘瑞斌) and Zou Bing-Suo(邹炳锁) Lasing behaviour from the condensation of polaronic excitons in a ZnO nanowire 2011 Chin. Phys. B 20 047104

[1] Keldysh L V and Kopaev Y V 1964 Fiz. Tverd. Tela. 6 2791
[2] Chu H and Chang Y C 1996 Phys. Rev. B 54 5020
[3] Koinov Z G 2000 Phys. Rev. B 61 8411
[4] Naveh Y and Laikhtman B 1996 Phys. Rev. Lett. 77 900
[5] Butov L V and Filin A I 1998 Phys. Rev. B 58 1980
[6] Krivolapchuk V V, Moskalenko E S and Zhmodikov A L 2001 Phys. Rev. B 64 045313
[7] Butov L V, Gossard A C and Chemla D S 2002 Nature 418 751
[8] Cao L, Miao Y M, Zhang Z B, Xie S S, Yang G Z and Zou B S 2005 J. Chem. Phys. 123 024702
[9] Eisensteinl J P and MacDonald A H 2004 Nature 432 691
[10] Snoke D W 2003 Phys. Stat. Sol. (b) 238 389
[11] Kolomeisky E B, Newman T J, Straley J P and Qi X Y 2000 Phys. Rev. Lett. 851146
[12] Bayindir M, Tanatar B and Gedik Z 1999 Phys. Rev. A 59 1468
[13] Paredes B, Widera A, Murg V, Mandel O, Filling S, Cirac I, Shlyapnikov G V, Honsch T W and Bloch I 2004 Nature 429 277
[14] Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
[15] Ketterle W, Durfee D S and Stamper-Kurn D M 1999 http://lanl.arXiv.org/ps/cond-mat/9904034/Apr
[16] Schmitt O M, Gartner P, Banyai L, Tran Thoai D B and Haug H 2000 Phys. Stat . Sol. (b) 221 221
[17] Awschalom D D and Kikkawa J M 1999 Phys. Today 52 33
[18] Zou B S, Liu R B, Pan A L and Wang Z L 2006 J. Phys. Chem. B 110 12865
[19] Bulakh B, Khomenkova L, Kushnirenko V and Markevich I 2004 Phys. J. Appl. Phys. 27 305
[20] Schmitt-Rink S, Chemla D S and Miller D A B 1989 Adv. Phys. 38 89
[21] Griffin A, Snoke D W and Stringari S 1995 Bose--Einstein Condensation (Cambridge: Cambridge University Press) pp. 330, 507, 524
[22] Rashba E I and Sturge M D 1982 Excitons (Amsterdam, New York: North-Holland Publishing Company) p. 178
[23] Roubtsov D, Lépine Y and Loutsenko I 2001 Proceedings of the 25th Int. Conf. on the Physics of Semiconductors (Berlin: Springer-Verlag)
[24] Tang Z K, Wong G K L and Yu P 1998 Appl. Phys. Lett. 72 3270
[25] Klingshirn C F 1995 Semiconductor Optics (Berlin: Springer) p. 306
[26] Johnson J C, Yan H Q and Yang P D 2003 J. Phys. Chem. B 107 8816
[27] Johnson J C, Knutsen K P and Yang P D 2004 Nano Lett. 4 197
[28] Klingshirn C 1992 J. Cryst. Growth 117 753
[29] Ding C R, Lin W, Chen B C, Zhao F L, Dong J W, Shi M, Wang H Z, Hsu Y F and Djurisic A B 2008 Appl. Phys. Lett. 93 151902
[30] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 2871019
[31] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Osorio Guillen J M, Johansson B and Gehring G A 2003 Nature Mater. 2 673
[32] Wu J Z, Yoo Y Z, Sekiguchi T and Chikyow T 2003 Appl. Phys. Lett. 83 39
[33] Norberg N S, Kittilstved K R and Amonette J E 2004 J. Am. Chem. Soc. 126 9387
[34] Liu R B, Pan A L, Wang F F and Zou B S 2007 Chin. Phys. Lett. 24 1129
[35] Furdya J K 1988 J. Appl. Phys. 64 R29
[36] Takahashi M 2004 Phys. Rev. B 70 035207
[37] Mizokawa T, Nambu T and Fujimori A 2002 Phys. Rev. B 65 085209
[38] Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B and Slavin A N 2006 Nature 443 430
[39] Liu S A, Lin S M and Wang Q M 1999 Acta Phys. Sin. 8 514 (Overseas Edition)
[40] Leung Y H, Kwok W M and Phillips D L 2005 Nanotechnology 16 579
[41] Klochikhin A A, Permogorov S A and Reznitskii A N 1976 Soviet Physic --JETP 71 2230 endfootnotesize
[1] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[2] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[3] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[4] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[5] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[6] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[7] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[8] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[9] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[10] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[11] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[12] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[13] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[14] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[15] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
No Suggested Reading articles found!