CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Lasing behaviour from the condensation of polaronic excitons in a ZnO nanowire |
Liu Rui-Bin(刘瑞斌) and Zou Bing-Suo(邹炳锁)† |
Nanophotonics Laboratory, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Atoms under optical and magnetic trapping in a limited space at a very low temperature can lead to Bose-Einstein condensation (BEC), even in a one-dimensional (1D) optical lattice. However, can the confinment of dense excitons in a 1D semiconductor microstructure easily reach the excitonic BEC? A lightly Mn(II)-doped ZnO nanowire under a femtosecond laser pulse pump at room temperature produces single-mode lasing from coherent bipolaronic excitons, which is much like a macroscopic quantum state due to the condensation of the bipoaronic excitons if not real BEC. In this process, longitudinal biphonon binding with the exciton plays an important role. We revisit this system and propose possibility of bipolaronic exciton condensation. More studies are needed for this condensation phenomenon in 1D microcavity systems.
|
Received: 20 September 2010
Revised: 12 November 2010
Accepted manuscript online:
|
PACS:
|
71.35.Lk
|
(Collective effects (Bose effects, phase space filling, and excitonic phase transitions))
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 90606001,20873039, and 51002011) and the Excellent Young Scholars Research Fund of Beijing Institute of Technology. |
Cite this article:
Liu Rui-Bin(刘瑞斌) and Zou Bing-Suo(邹炳锁) Lasing behaviour from the condensation of polaronic excitons in a ZnO nanowire 2011 Chin. Phys. B 20 047104
|
[1] |
Keldysh L V and Kopaev Y V 1964 Fiz. Tverd. Tela. 6 2791
|
[2] |
Chu H and Chang Y C 1996 Phys. Rev. B 54 5020
|
[3] |
Koinov Z G 2000 Phys. Rev. B 61 8411
|
[4] |
Naveh Y and Laikhtman B 1996 Phys. Rev. Lett. 77 900
|
[5] |
Butov L V and Filin A I 1998 Phys. Rev. B 58 1980
|
[6] |
Krivolapchuk V V, Moskalenko E S and Zhmodikov A L 2001 Phys. Rev. B 64 045313
|
[7] |
Butov L V, Gossard A C and Chemla D S 2002 Nature 418 751
|
[8] |
Cao L, Miao Y M, Zhang Z B, Xie S S, Yang G Z and Zou B S 2005 J. Chem. Phys. 123 024702
|
[9] |
Eisensteinl J P and MacDonald A H 2004 Nature 432 691
|
[10] |
Snoke D W 2003 Phys. Stat. Sol. (b) 238 389
|
[11] |
Kolomeisky E B, Newman T J, Straley J P and Qi X Y 2000 Phys. Rev. Lett. 851146
|
[12] |
Bayindir M, Tanatar B and Gedik Z 1999 Phys. Rev. A 59 1468
|
[13] |
Paredes B, Widera A, Murg V, Mandel O, Filling S, Cirac I, Shlyapnikov G V, Honsch T W and Bloch I 2004 Nature 429 277
|
[14] |
Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
|
[15] |
Ketterle W, Durfee D S and Stamper-Kurn D M 1999 http://lanl.arXiv.org/ps/cond-mat/9904034/Apr
|
[16] |
Schmitt O M, Gartner P, Banyai L, Tran Thoai D B and Haug H 2000 Phys. Stat . Sol. (b) 221 221
|
[17] |
Awschalom D D and Kikkawa J M 1999 Phys. Today 52 33
|
[18] |
Zou B S, Liu R B, Pan A L and Wang Z L 2006 J. Phys. Chem. B 110 12865
|
[19] |
Bulakh B, Khomenkova L, Kushnirenko V and Markevich I 2004 Phys. J. Appl. Phys. 27 305
|
[20] |
Schmitt-Rink S, Chemla D S and Miller D A B 1989 Adv. Phys. 38 89
|
[21] |
Griffin A, Snoke D W and Stringari S 1995 Bose--Einstein Condensation (Cambridge: Cambridge University Press) pp. 330, 507, 524
|
[22] |
Rashba E I and Sturge M D 1982 Excitons (Amsterdam, New York: North-Holland Publishing Company) p. 178
|
[23] |
Roubtsov D, Lépine Y and Loutsenko I 2001 Proceedings of the 25th Int. Conf. on the Physics of Semiconductors (Berlin: Springer-Verlag)
|
[24] |
Tang Z K, Wong G K L and Yu P 1998 Appl. Phys. Lett. 72 3270
|
[25] |
Klingshirn C F 1995 Semiconductor Optics (Berlin: Springer) p. 306
|
[26] |
Johnson J C, Yan H Q and Yang P D 2003 J. Phys. Chem. B 107 8816
|
[27] |
Johnson J C, Knutsen K P and Yang P D 2004 Nano Lett. 4 197
|
[28] |
Klingshirn C 1992 J. Cryst. Growth 117 753
|
[29] |
Ding C R, Lin W, Chen B C, Zhao F L, Dong J W, Shi M, Wang H Z, Hsu Y F and Djurisic A B 2008 Appl. Phys. Lett. 93 151902
|
[30] |
Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 2871019
|
[31] |
Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Osorio Guillen J M, Johansson B and Gehring G A 2003 Nature Mater. 2 673
|
[32] |
Wu J Z, Yoo Y Z, Sekiguchi T and Chikyow T 2003 Appl. Phys. Lett. 83 39
|
[33] |
Norberg N S, Kittilstved K R and Amonette J E 2004 J. Am. Chem. Soc. 126 9387
|
[34] |
Liu R B, Pan A L, Wang F F and Zou B S 2007 Chin. Phys. Lett. 24 1129
|
[35] |
Furdya J K 1988 J. Appl. Phys. 64 R29
|
[36] |
Takahashi M 2004 Phys. Rev. B 70 035207
|
[37] |
Mizokawa T, Nambu T and Fujimori A 2002 Phys. Rev. B 65 085209
|
[38] |
Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B and Slavin A N 2006 Nature 443 430
|
[39] |
Liu S A, Lin S M and Wang Q M 1999 Acta Phys. Sin. 8 514 (Overseas Edition)
|
[40] |
Leung Y H, Kwok W M and Phillips D L 2005 Nanotechnology 16 579
|
[41] |
Klochikhin A A, Permogorov S A and Reznitskii A N 1976 Soviet Physic --JETP 71 2230 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|