Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 030703    DOI: 10.1088/1674-1056/20/3/030703
GENERAL Prev   Next  

Dispersion characteristics of a slow wave structure with a modified photonic band gap

Gao Xi(高喜)a)b),Yang Zi-Qiang(杨梓强)a), Cao Wei-Ping(曹卫平)b),and Jiang Yan-Nan(姜彦南)b)
a School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China; b Information and Communication College, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  This paper studies the dispersion characteristics of a modified photonic band-gap slow-wave structure with an open boundary by simulation and experiment. A mode launcher with a wheel radiator and a coupling probe is presented to excite a pure TM01-like mode. The cold test and simulation results show that the TM01-like mode is effectively excited and no parasitic modes appear. The dispersion characteristics obtained from the cold test are in good agreement with the calculated results.
Keywords:  modified photonic band-gap      slow-wave structure      TM01-like mode      cold test  
Received:  24 April 2010      Revised:  22 July 2010      Accepted manuscript online: 
PACS:  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  42.70.Qs (Photonic bandgap materials)  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10975036 and 61071018) and the Guangxi Natural Science Foundation, China (Grant No. 2010GXNSFB013049).

Cite this article: 

Gao Xi(高喜), Yang Zi-Qiang(杨梓强), Cao Wei-Ping(曹卫平), and Jiang Yan-Nan(姜彦南) Dispersion characteristics of a slow wave structure with a modified photonic band gap 2011 Chin. Phys. B 20 030703

[1] Liu H W, Sun X W, Li Z F, Qian R and Zhou M 2003 Acta Phys. Sin. 52 3082 (in Chinese)
[2] Yin H R, Gong Y B, Wei Y Y, Gong H R, Yue L N, Lu Z G, Huang M Z and Wang W X 2007 Chin. Phys. 16 2737
[3] Smirnova E I, Kesar A S, Mastovsky I, Shapiro M A and Temkin R J 2005 Phys. Rev. Lett. 95 074801
[4] Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A and Temkin R J 2001 Phys. Rev. Lett. 86 5628
[5] Bailey A G, Smirnova E I, Earley L M and Carlsten B E 2005 it Proc. SPIE 6120 612004
[6] Liu X J, Lei H, Yu T, Feng J J and Liao F J 2008 Opt. Commun. 28 102
[7] Chen B, Qian B L and Zhong H H 2006 High Power Laser and Particle Beams 18 862
[8] Jang K H, Jeon S G, Kim J I, Won J H, So J K, Bak S H, srivastava A, Jung S S and Park G S 2008 Appl. Phys. Lett. 93 211104
[9] Gao X, Yang Z Q, Qi L M, Lan F, Shi Z J, Li D Z and Liang Z 2009 Chin. Phys. B 18 2452
[10] Gao X, Yang Z Q, Hou J, Qi L M, Lan F, Shi Z J, Li D Z and Liang Z 2009 Acta Phys. Sin. 58 1105 (in Chinese)
[11] Guo H Z, Carmel Y, Weiran R L, Chen L, John R, David K A, Bromborsky A, William D and Victor L G 1992 IEEE Trans. Microwave Theory and Techniques 11 2086
[12] Ramo R, Whinnery J R and Duzer T V 1984 Fields and Waves in Communication Electronics (New York: Wiley) pp582--583
[13] Pozar D M 2005 Microwave Engineering (New York: Springer) pp298--299
[14] Shapiro M A, Brown W J, Mastovsky I, Sirigiri J R and Temkin R J 2001 Physical Review Special Topics-Accelerators and Beams 4 042001
[1] Linear theory of beam-wave interaction in double-slot coupled cavity travelling wave tube
Fang-ming He(何昉明), Wen-qiu Xie(谢文球), Ji-run Luo(罗积润), Min Zhu(朱敏), Wei Guo(郭炜). Chin. Phys. B, 2016, 25(3): 038401.
[2] A novel multi-pin rectangular waveguide slow-wave structure based backward wave amplifier at 340 GHz
Zhang Kai-Chun (张开春), Qi Zhong-Kuo (漆中阔), Yang Zhao-Long (杨召龙). Chin. Phys. B, 2015, 24(7): 079402.
[3] A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes
Liu Lu-Wei (刘鲁伟), Wei Yan-Yu (魏彦玉), Wang Shao-Meng (王少萌), Hou Yan (侯艳), Yin Hai-Rong (殷海荣), Zhao Guo-Qing (赵国庆), Duan Zhao-Yun (段兆云), Xu Jin (徐进), Gong Yu-Bin (宫玉彬), Wang Wen-Xiang (王文祥), Yang Ming-Hua (杨明华). Chin. Phys. B, 2013, 22(10): 108401.
[4] Design of a reentrant double staggered ladder circuit for V-band coupled-cavity traveling-wave tube
Liu Yang(刘洋), Xu Jin(徐进), Lai Jian-Qiang(赖剑强), Xu Xiong(许雄), Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Huang Min-Zhi(黄民智), Tang Tao(唐涛), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(7): 074202.
[5] Research of sine waveguide slow-wave structure for a 220-GHz backward wave oscillator
Xu Xiong(许雄), Wei Yan-Yu(魏彦玉), Shen Fei(沈飞), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Duan Zhao-Yun(段兆云), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(6): 068402.
[6] Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(6): 064210.
[7] An open-styled dielectric-lined azimuthally periodic circular waveguide for a millimeter wave traveling-wave tube
Liu Yang(刘漾), Wei Yan-Yu(魏彦玉), Xu Jin(徐进), Yin Hai-Rong(殷海荣), Yue Ling-Na(岳玲娜), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(4): 048403.
[8] Investigation of a wideband folded double-ridged waveguide slow-wave system
He Jun(何俊), Wei Yan-Yu(魏彦玉), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥). Chin. Phys. B, 2011, 20(5): 054102.
[9] Small-signal analysis of a rectangular helix structure traveling-wave-tube
Fu Cheng-Fang(付成芳), Wei Yan-Yu(魏彦玉), Duan Zhao-Yun(段兆云), Wang Wen-Xiang(王文祥), and Gong Yu-Bin(宫玉彬). Chin. Phys. B, 2009, 18(7): 2749-2756.
[10] Variational analysis of the disc-loaded waveguide slow-wave structures
Li Jian-Qing (李建清), Mo Yuan-Long (莫元龙). Chin. Phys. B, 2005, 14(11): 2300-2304.
No Suggested Reading articles found!