Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024204    DOI: 10.1088/1674-1056/20/2/024204
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Graded index profiles and loss-induced single-mode characteristics in vertical-cavity surface-emitting lasers with petal-shape holey structure

Liu An-Jin(刘安金)a),Qu Hong-Wei(渠红伟)a),Chen Wei(陈微)a),Jiang Bin(江斌)a), Zhou Wen-Jun(周文君)a),Xing Ming-Xin(邢名欣) a),and Zheng Wan-Hua(郑婉华) a)b)
a Nano-optoelectronics Lab, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, and the graded index distribution in the holey region is demonstrated. The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth. Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser. Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes, the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution, but has a lower output power, higher threshold current and lower slope efficiency. With the hole number increased, the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range, and reduces the beam divergence further. The loss mechanism is used to explain the single-mode characteristic, and the reduced beam divergence is attributed to the shallow etching. High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.
Keywords:  vertical-cavity surface-emitting lasers      single mode      low divergence angle      graded index profile  
Received:  07 July 2010      Revised:  29 July 2010      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.60.Pk (Continuous operation)  
Fund: Project supported by the National Key Basic Research Special Foundation of China (Grant No. 2011CB922000), the National Natural Science Foundation of China (Grant Nos. 61025025 and 60838003), and the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z410 and 2007AA03Z408).

Cite this article: 

Liu An-Jin(刘安金), Qu Hong-Wei(渠红伟), Chen Wei(陈微), Jiang Bin(江斌), Zhou Wen-Jun(周文君), Xing Ming-Xin(邢名欣), and Zheng Wan-Hua(郑婉华) Graded index profiles and loss-induced single-mode characteristics in vertical-cavity surface-emitting lasers with petal-shape holey structure 2011 Chin. Phys. B 20 024204

[1] Iga K, Koyama F and Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845
[2] Wu J and Summers H D 2010 Chin. Phys. B 19 014213
[3] Yang H, Guo X, Guan B L, Wang T X and Shen G D 2008 Acta Phys. Sin. 57 2959 (in Chinese)
[4] Li H Q, Zhang J, Cui D F, Xu Z Y, Ning Y Q, Yan C L, Qin L, Liu Y, Wang L J and Cao J L 2004 Acta Phys. Sin. 53 2986 (in Chinese)
[5] Tong C Z, Niu Z C, Han Q and Wu R H 2005 Acta Phys. Sin. bf 54 3651 (in Chinese)
[6] Mukoyama N, Otoma H, Sakurai J, Ueki N and Nakayama H 2008 it Proc. SPIE 6908 69080H1
[7] Rao Z, Matteo J A, Hesselink L and Harris J S 2006 Proc. SPIE 6132 61320J1
[8] Szweda R 2006 III-Vs REVIEW 19 32
[9] Giannopoulos A V, Kasten A M, Long C M, Chen C and Choquette K D 2008 Appl. Opt. 47 4555
[10] Ortsiefer M, Hofmann W, Rönneberg E, Boletti A, Gatto A, Boffi P, Rosskopf J, Shau R, Neumeyr C, Böhm G, Martinelli M and Amann M C 2008 Electron. Lett. 44 974
[11] Wiedenmann D, King R, Jung C, J"ager R, Michalzik R, Schnitzer P, Kicherer M and Ebeling K J 1999 IEEE J. Select. Topics Quantum Electron. 5 503
[12] Lin C K, Tandon A, Djordjev K, Corzine S W and Tan M R T 2007 it IEEE J. Select. Topics Quantum Electron. 13 1332
[13] Zappe H P, Hess M, Moser M, Hövel R, Gulden K, Gauggel H P and Sopra di F M 2000 Appl. Opt. 39 2475
[14] Cattaneo H and Hernberg R 2005 Appl. Opt. 44 6593
[15] Serkland D K, Peake G M, Geib K M, Lutwak R, Garvey R M, Varghese M and Mescher M 2006 Proc. SPIE 6132 6132081
[16] Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew L A and Moreland J 2004 Appl. Phys. Lett. 85 1460
[17] Chang-Hasnain C J 2003 IEEE Opt. Commun. S30--S34
[18] Amann M C and Hofmann W 2009 IEEE J. Select. Topics Quantum Electron. 15 861
[19] Leisher P O, Danner A J and Choquette K D 2006 IEEE Photon. Technol. Lett. 18 2156
[20] Onishi Y, Saga N, Koyama K, Doi H, Ishizuka T, Yamada T, Fujii K, Mori H, Hashimoto J, Shimazu M, Yamaguchi A and Katsuyama T 2009 IEEE J. Select. Topics Quantum Electron. 15 838
[21] Kapon E and Sirbu A 2009 Nature Photon. 3 27
[22] Dallesasse J M, Holonyak N, Sugg A R, Richard T A and El-Zein N 1990 Appl. Phys. Lett. bf 57 2844
[23] Lear K L, Choquette K D, Schneider R P and Kilcoyne S P 1995 Appl. Phys. Lett. 66 2616
[24] Choquette K D, Geib K M, Ashby C I H, Twesten R D, Blum O, Hou H Q, Follstaedt D M, Hammons B E, Mathes D and Hull R 1997 IEEE J. Select. Topics Quantum Electron. 3 916
[25] Satuby Y and Orenstein M 1998 IEEE Photon. Technol. Lett. 10 760
[26] Leisher P O, Danner A J, Raftery Jr J J and Choquette K D 2005 it Electron. Lett. 41 1010
[27] Yang H P D, Lai F I, Chang Y H, Yu H C, Sung C P, Kuo H C, Wang S C, Lin S Y and Chi J Y 2005 Electron. Lett. 41 326
[28] Weigl B, Grabherr M, Michalzik R, Reiner G and Ebeling K J 1996 it IEEE Photon. Technol. Lett. 8 971
[29] Lim D H, Hwang S M and Nam S H 2001 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society 2 724
[30] Martinsson H, Vukuusi'c J A, Grabherr M, Michalzik R, J"ager R, Ebeling K J and Larsson A 1999 IEEE Photon. Technol. Lett. 11 1536
[31] Haglund AA, Gustavsson J S, Vukuusi'c J, Modh P and Larsson A 2004 IEEE Photon. Technol. Lett. 16 368
[32] Huang M C Y, Zhou Y and Chang-Hasnain C J 2007 Nature Photon. 1 119
[33] Shinada S and Koyama F 2002 IEEE Photon. Technol. Lett. bf 14 1641
[34] Ueki N, Sakamoto A, Nakamura T, Nakayama H, Sakurai J, Otoma H, Miyamoto Y, Yoshikawa M and Fuse M 1999 IEEE Photon. Technol. Lett. 11 1539
[35] Ostermann J M, Rinaldi F, Debernardi P and Michalzik R 2005 it IEEE Photon. Technol. Lett. 17 2256
[36] Unold H J, Golling M, Michalzik R, Supper D and Ebeling K J 2001 Proc. 27th Euro. Conf. Opt. Commun. p. talk Th.A.1.4
[37] Liu A J, Xing M X, Qu H W, Chen W, Zhou W J and Zheng W H 2009 it Appl. Phys. Lett. 94 191105
[38] Liu A J, Xing M X, Qu H W, Chen W, Zhou W J and Zheng W H 2010 Acta Phys. Sin. 59 1035 (in Chinese)
[39] Song D S, Kim S H, Park H G, Kim C K and Lee Y H 2002 Appl. Phys. Lett. 80 3901
[40] Yang H P D, Hsu I C, Chang Y H, Lai F I, Yu H C, Lin G, Hsiao R S, Maleev N A, Blokhin S A, Kuo H C and Chi J Y 2008 J. Lightw. Technol. 26 1387
[41] Romstad F, Bischoff S, Juhl M, Jacobsen S and Birkedal D 2008 it Proc. SPIE 6908 69080C1
[42] Stevens R, Gilet P, Larrue A, Grenouillet L, Olivier N, Grosse P, Gilbert K, Hladys B, Bakir B B, Berggren J, Hammar M and Chelnokov A 2008 Proc. SPIE 6997 69970X1
[43] Kasten A M, Sulkin J D, Leisher P O, McElfresh D K, Vacar D and Choquette K D 2008 IEEE J. Selet. Topics Quantum Electron. 14 1123
[44] Czyszanowski T, Dems M, Thienpont H and Panajotov K 2007 Opt. Express 15 1301
[45] Young E W, Choquette K D, Chuang S L, Geib K M, Fischer A J and Allerman A A 2001 IEEE Photon. Technol. Lett. 13 927
[46] Fischer A J, Chow W W, Serkland D K, Merman A A, Geib K M and Choquette K D 2001 Conference on Lasers and Electro-Optics (CLEO) p. talk CTuB1
[47] Chang K S, Song Y M and Lee Y T 2007 Appl. Phys. B 89 231
[48] Furukawa A, Sasaki S, Hoshi M, Matsuzono A, Moritoh K and Baba T 2004 Appl. Phys. Lett. bf 85 5161
[49] Leisher P O, Danner A J, Raftery Jr J J, Siriani D and Choquette K D 2006 IEEE J. Quantum Electron. 42 1091
[50] Morito K, Mori D, Mizuta E and Baba T 2005 Proc. SPIE bf 5722 191
[51] Yang H P D, Hsu I C, Lai F I, Kuo H C and Chi J Y 2006 Jpn. J. Appl. Phys. 45 L871
[52] Yokouchi N, Danner A J and Choquette K D 2003 Appl. Phys. Lett. 82 1344
[53] Yokouchi N, Ueda N, Shinagawa T, Iwai N, Sasaki Y, Ariga M, Uchiyama S, Shiina Y and Kasukawa A 2001 The 4th Pacific Rim Conference on Lasers and Electro-Optics 2 II-586
[54] Ogura A, Kuchiki S, Shiraishi K, Ohta K and Oishi I 2001 IEEE Photon. Technol. Lett. 13 1191
[55] Heinrich J, Zeeb E and Ebeling K J 1997 IEEE Photon. Technol. Lett. 9 1555
[1] Power-induced polarization switching and bistability characteristics in 1550-nm VCSELs subjected to orthogonal optical injection
Chen Jian-Jun (陈建军), Xia Guang-Qiong (夏光琼), Wu Zheng-Mao (吴正茂). Chin. Phys. B, 2015, 24(2): 024210.
[2] Material growth and device fabrication of terahertz quantum-cascade laser based on bound-to-continuum structure
Yin Rong (尹嵘), Wan Wen-Jian (万文坚), Zhang Zhen-Zhen (张真真), Tan Zhi-Yong (谭智勇), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2014, 23(10): 104207.
[3] A power and wavelength detuning-dependent hysteresis loop in a single mode Fabry-Pérot laser diode
Wu Jian-Wei (吴建伟), Bikash Nakarmi. Chin. Phys. B, 2013, 22(8): 084204.
[4] The improved output performance of a broad-area vertical-cavity surface-emitting laser with an optimized electrode diameter
Zhang Xing (张星), Ning Yong-Qiang (宁永强), Qin Li (秦莉), Tong Cun-Zhu (佟存柱), Liu Yun (刘云), Wang Li-Jun (王立军). Chin. Phys. B, 2013, 22(6): 064209.
[5] Vertical cavity surface emitting laser transverse mode and polarization control by elliptical holes photonic crystal
Cao Tian (曹田), Xu Chen (徐晨), Xie Yi-Yang (解意洋), Kan Qiang (阚强), Wei Si-Min (魏思民), Mao Ming-Ming (毛明明), Chen Hong-Da (陈弘达 ). Chin. Phys. B, 2013, 22(2): 024205.
[6] Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers
Shi Guo-Zhu (史国柱), Guan Bao-Lu (关宝璐), Li Shuo (李硕), Wang Qiang (王强), Shen Guang-Di (沈光地). Chin. Phys. B, 2013, 22(1): 014206.
[7] Single-mode low threshold current multi-hole vertical-cavity surface-emitting lasers
Zhao Zhen-Bo(赵振波), Xu Chen(徐晨), Xie Yi-Yang(解意洋), Zhou Kang(周康), Liu Fa(刘发), and Shen Guang-Di(沈光地) . Chin. Phys. B, 2012, 21(3): 034206.
[8] Modeling of resistance characteristics of a continuously-graded distributed Bragg reflector in a 980-nm vertical-cavity surface-emitting laser
Huang Meng (黄梦), Wu Jian (吴坚), Cui Huai-Yang (崔怀洋), Qian Jian-Qiang (钱建强), Ning Yong-Qiang (宁永强). Chin. Phys. B, 2012, 21(10): 104207.
[9] Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves
Zhang Hai-Yan(张海燕) and Yu Jian-Bo(于建波) . Chin. Phys. B, 2011, 20(9): 094301.
[10] The system of L-band 2×10 Gb/s WDM transmission over conventional single mode fibre with 600 km by chirped fibre Bragg gratings dispersion compensation
Yan Feng-Ping(延凤平), Tong Zhi(童治), Wei Huai(魏淮), Pei Li(裴丽), Ning Ti-Gang(宁提纲), Fu Yong-Jun (傅永军), Zheng Kai(郑凯), Wang Lin (王琳), Li Yi-Fan (李一凡), Gong Tao-Rong(龚桃荣), and Jian Shui-Sheng(简水生). Chin. Phys. B, 2007, 16(6): 1700-1703.
[11] Micromechanical tunable vertical-cavity surface-emitting lasers
Guan Bao-Lu(关宝璐), Guo Xia(郭霞), Deng Jun(邓军), Qu Hong-Wei(渠红伟), Lian Peng(廉鹏), Dong Li-Min(董立敏), Chen Min(陈敏), and Shen Guang-Di(沈光地). Chin. Phys. B, 2006, 15(12): 2959-2962.
[12] Quantum entanglement in the system of two two-level atoms interacting with a single-mode vacuum field
Zeng Ke (曾可), Fang Mao-Fa (方卯发). Chin. Phys. B, 2005, 14(10): 2009-2013.
[13] Single mode rate equations for two sections self-pulsating DFB laser
Wang Chun-Lin (王春林), Wu Jian (伍剑), Lin Jin-Tong (林金桐). Chin. Phys. B, 2003, 12(5): 528-531.
No Suggested Reading articles found!