Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024203    DOI: 10.1088/1674-1056/20/2/024203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Decoherence of photon-subtracted squeezed vacuum state in dissipative channel

Xu Xue-Xiang(徐学翔)a)b), Yuan Hong-Chun(袁洪春) b)†, and Fan Hong-Yi(范洪义)b)
a College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; b Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
Abstract  This paper investigates the decoherence of photo-subtracted squeezed vacuum state (PSSVS) in dissipative channel by describing its statistical properties with time evolution such as Wigner function, Husimi function, and tomogram. It first calculates the normalization factor of PSSVS related to Legendre polynomial. After deriving the normally ordered density operator of PSSVS in dissipative channel, one obtains the explicit analytical expressions of time evolution of PSSVS's statistical distribution function. It finds that these statistical distributions loss their non-Gaussian nature and become Gaussian at last in the dissipative environment as expected.
Keywords:  photon-subtracted squeezed vacuum state      Wigner function      Husimi function      tomogram  
Received:  07 March 2010      Revised:  09 July 2010      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10775097), the Key Program Foundation of the Ministry of Education of China (Grant No. 210115) and the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ10097).

Cite this article: 

Xu Xue-Xiang(徐学翔), Yuan Hong-Chun(袁洪春), and Fan Hong-Yi(范洪义) Decoherence of photon-subtracted squeezed vacuum state in dissipative channel 2011 Chin. Phys. B 20 024203

[1] Agarwal G S and Tara K 1991 emphPhys. Rev. A 43 492
[2] Hu L Y and Fan H Y 2009 emphMod. Phys. Lett. A 24 2263
[3] Jones G N, Haight J and Lee C T 1997 emphQuantum Semiclass. Opt. 9 411
[4] Meng X G, Wang J S, Liang B L and Li H Q 2008 emphChin. Phys. B 17 1791
[5] Yuan H C, Xu X X and Fan H Y 2009 emphInt. J. Theor. Phys. 48 3596
[6] Ourjoumtsev A, Dantan A, Tualle B R and Grangier P 2007 emphPhys. Rev. Lett. 98 030502
[7] Kim M S 2008 emphJ. Phys. B: At. Mol. Opt. Phys. 41 133001
[8] Parigi V, Zavatta A, Kim M S and Bellini M 2007 emphScience 317 1890
[9] Wang J S and Meng X G 2008 emphChin. Phys. B 17 1254
[10] Chang P, Shao B and Long G L 2008 emphPhys. Lett. A 372 7124
[11] Nath P and Muthu S K 1996 emphQuantum Semiclass. Opt. 8 915
[12] Duc T M and Noh J 2008 emphOpt. Commun. 281 2842
[13] Zhang J S and Xu J B 2009 emphPhys. Scr. 79 025008
[14] Yuan H C, Li H M and Fan H Y 2009 emphCan. J. Phys. 87 1233
[15] Ren Z Z, Jing H and Zhang X Z 2008 emphChin. Phys. Lett. 25 3562
[16] Biswas A and Agarwal G S 2007 emphPhys. Rev. A 75 032104
[17] Hu L Y and Fan H Y 2008 emphJ. Opt. Soc. Am. B 25 1955
[18] Hu L Y and Fan H Y 2008 emphMod. Phys. Lett. B 22 2435
[19] Wakui K, Takahashi H, Furusawa A and Sasaki M 2007 emphOpt. Express 15 3568
[20] Ourjoumtsev A, Tualle B R, Laurat J and Grangier P 2006 emphScience 312 83
[21] Rainville E D 1945 emphBull. Am. Math. Soc. 51 268
[22] Garder C and Zoller P 2000 emphQuantum Noise (Berlin: Springer) bibitem 23Meng X G, Wang J S and Liang B L 2009 emphChin. Phys. B 18 1534
[24] Rainville E D 1960 emphSpecial Functions (New York: MacMillan)
[25] Wigner E 1932 emphPhys. Rev. 40 749
[26] Hu L Y and Fan H Y 2009 emphChin. Phys. B 18 902
[27] Husimi K 1940 emphProc. Physico-Math. Soc. Jpn. 22 264
[28] Fan H Y and Liu S G 2007 emphCommun. Theor. Phys. 47 427
[29] Deans S R 1983 emphThe Radon Transform and Some of Its Applications (New York: Wiley)
[30] Fan H Y and Chen H L 2001 emphChin. Phys. Lett. 18 150
[31] Meng X G, Wang J S and Li Y L 2007 emphChin. Phys. 16 2415
[32] Yang Y and Li F L 2009 emphJ. Opt. Soc. Am. B 26 830 endfootnotesize
[1] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[2] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[3] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[4] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[5] Cryo-ET bridges the gap between cell biology and structural biophysics
Xiao-Fang Cheng(程小芳), Rui Wang(王睿), Qing-Tao Shen(沈庆涛). Chin. Phys. B, 2018, 27(6): 066803.
[6] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[7] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[8] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[9] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[10] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[11] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[12] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[13] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[14] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
[15] Nonclassicality of a two-variable Hermite polynomial state
Tan Guo-Bin(谭国斌), Xu Li-Juan(徐莉娟), and Ma Shan-Jun(马善钧) . Chin. Phys. B, 2012, 21(4): 044210.
No Suggested Reading articles found!