Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 020507    DOI: 10.1088/1674-1056/20/2/020507
GENERAL Prev   Next  

Synchronization of spatiotemporal chaotic systems and application to secure communication of digital image

Wang Xing-Yuan, Zhang Na, Ren Xiao-Li, Zhang Yong-Lei
Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  Coupled map lattices (CMLs) are taken as examples to study the synchronization of spatiotemporal chaotic systems. In this paper, we use the nonlinear coupled method to implement the synchronization of two coupled map lattices. Through the appropriate separation of the linear term from the nonlinear term of the spatiotemporal chaotic system, we set the nonlinear term as the coupling function and then we can achieve the synchronization of two coupled map lattices. After that, we implement the secure communication of digital image using this synchronization method. Then, the discrete characteristics of the nonlinear coupling spatiotemporal chaos are applied to the discrete pixel of the digital image. After the synchronization of both the communication parties, the receiver can decrypt the original image. Numerical simulations show the effectiveness and the feasibility of the proposed program.
Keywords:  digital image      secure communication      coupled map lattice      projective synchronization  
Received:  11 August 2010      Revised:  03 October 2010      Published:  15 February 2011
PACS:  05.45.Jn (High-dimensional chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152), the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014), and the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165).

Cite this article: 

Wang Xing-Yuan, Zhang Na, Ren Xiao-Li, Zhang Yong-Lei Synchronization of spatiotemporal chaotic systems and application to secure communication of digital image 2011 Chin. Phys. B 20 020507

[1] Kaneko K 1985 Prog. Theor. Phys. 74 1033
[2] Hu G and Yang J Z 1997 Phys. Rev. E 56 2738
[3] Nekorkin V I and Verlarde M G 1997 Phys. Lett. A 236 505
[4] Xun H Y and Xiu M S 2002 Chaos, Solitons and Fractals 14 1077
[5] Yue J and Shi Y Y 2003 Chaos, Solitons and Fractals 17 967
[6] Wang M S and Hou Z H 2006 Chin. Phys. 15 2553
[7] Emura T 2006 Phys. Lett. A 349 306
[8] Zhang H G 2007 Acta Phys. Sin. 56 3796 (in Chinese)
[9] Yue L J and Shen K 2005 Acta Phys. Sin. 54 5671 (in Chinese)
[10] Zhang H G, Ma D Z and Wang Z S 2010 Acta Phys. Sin. 59 147 (in Chinese)
[11] Alexander A and Uzrich P 2008 Phys. Rev. E 77 016201
[12] Zhang H G 2006 Acta Phys. Sin. 55 2687 (in Chinese)
[13] Lü L and Li G 2008 Acta Phys. Sin. 57 7517 (in Chinese)
[14] Chen G and Lai D 1998 Int. J. Bifurc. Chaos 8 1585
[15] Fuh C C and Tsai H H 2002 Chaos, Solitons and Fractals 13 285
[16] Li P and Li Z 2006 Phys. Lett. A 349 467
[1] Quantitative deformation measurements and analysis of the ferrite-austenite banded structure in a 2205 duplex stainless steel at 250℃
Ji-Hua Liu(刘计划). Chin. Phys. B, 2018, 27(3): 038102.
[2] Inverse full state hybrid projective synchronizationfor chaotic maps with different dimensions
Adel Ouannas, Giuseppe Grassi. Chin. Phys. B, 2016, 25(9): 090503.
[3] Secure communication based on spatiotemporal chaos
Ren Hai-Peng, Bai Chao. Chin. Phys. B, 2015, 24(8): 080503.
[4] A long-distance quantum key distribution scheme based on pre-detection of optical pulse with auxiliary state
Quan Dong-Xiao, Zhu Chang-Hua, Liu Shi-Quan, Pei Chang-Xing. Chin. Phys. B, 2015, 24(5): 050309.
[5] Partial and complete periodic synchronization in coupled discontinuous map lattices
Yang Ke-Li, Chen Hui-Yun, Du Wei-Wei, Jin Tao, Qu Shi-Xian. Chin. Phys. B, 2014, 23(7): 070508.
[6] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang, Liu Chong-Xin, Liu Kai, Liu Ling. Chin. Phys. B, 2014, 23(10): 100504.
[7] Adaptive function projective synchronization of uncertain complex dynamical networks with disturbance
Wang Shu-Guo, Zheng Song. Chin. Phys. B, 2013, 22(7): 070503.
[8] Generalized projective synchronization of two coupled complex networks with different sizes
Li Ke-Zan, He En, Zeng Zhao-Rong, Chi K. Tse. Chin. Phys. B, 2013, 22(7): 070504.
[9] A novel image block cryptosystem based on spatiotemporal chaotic system and chaotic neural network
Wang Xing-Yuan, Bao Xue-Mei. Chin. Phys. B, 2013, 22(5): 050508.
[10] Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos
Zhang Fang-Fang, Liu Shu-Tang, Yu Wei-Yong. Chin. Phys. B, 2013, 22(12): 120505.
[11] Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance
Wang Dong-Feng, Zhang Jin-Ying, Wang Xiao-Yan. Chin. Phys. B, 2013, 22(10): 100504.
[12] Projective synchronization of hyperchaotic system via periodically intermittent control
Huang Jun-Jian, Li Chuan-Dong, Zhang Wei, Wei Peng-Cheng. Chin. Phys. B, 2012, 21(9): 090508.
[13] Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2012, 21(6): 060504.
[14] Adaptive projective synchronization of different chaotic systems with nonlinearity inputs
Niu Yu-Jun,Wang Xing-Yuan,Pei Bing-Nan. Chin. Phys. B, 2012, 21(3): 030503.
[15] Generalized projective synchronization of fractional-order complex networks with nonidentical nodes
Liu Jin-Gui. Chin. Phys. B, 2012, 21(12): 120506.
No Suggested Reading articles found!