|
|
Partial and complete periodic synchronization in coupled discontinuous map lattices |
Yang Ke-Li (杨科利)a b, Chen Hui-Yun (陈会云)a, Du Wei-Wei (杜伟伟)a, Jin Tao (金涛)a, Qu Shi-Xian (屈世显)a |
a Institute of Theoretical and Computational Physics, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China; b Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721016, China |
|
|
Abstract The partial and complete periodic synchronization in coupled discontinuous map lattices consisting of both discontinuous and non-invertible maps are discussed. We classify three typical types of periodic synchronization states, which give rise to different spatiotemporal patterns including static partial periodic synchronization, dynamically periodic synchronization, and complete periodic synchronization patterns. A special prelude dynamics of partial and complete periodic synchronization motion, which is shown by five separated concave curves in the time series plots of the order parameters, is observed. The detailed analysis shows that the special prelude dynamics is induced by the competition between two synchronized clusters, and the analytical expression for the corresponding order parameter is obtained.
|
Received: 15 December 2013
Revised: 25 February 2014
Accepted manuscript online:
|
PACS:
|
05.45.Ra
|
(Coupled map lattices)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875076) and the Natural Science Foundation of Shaanxi Province, China (Grant No. SJ08A23). |
Corresponding Authors:
Qu Shi-Xian
E-mail: sxqu@snnu.edu.cn
|
About author: 05.45.Ra; 05.45.-a |
Cite this article:
Yang Ke-Li (杨科利), Chen Hui-Yun (陈会云), Du Wei-Wei (杜伟伟), Jin Tao (金涛), Qu Shi-Xian (屈世显) Partial and complete periodic synchronization in coupled discontinuous map lattices 2014 Chin. Phys. B 23 070508
|
[1] |
Sumpter D J T 2009 Collective Animal Behavior (Princeton: Princeton University Press)
|
[2] |
Buck J and Buck E 1976 Sci. Am. 234 74
|
[3] |
Buono P L and Golubitsky M 2001 J. Math. Biol. 42 291
|
[4] |
Guevara M R, Shrier A and Glass L 1988 Am. J. Physiol. 254 H1
|
[5] |
He D and Stone L 2003 Proc. R. Soc. London Ser. B 270 1519
|
[6] |
Womelsdorf T and Fries P 2007 Curr. Opin. Neurobiol. 17 154
|
[7] |
Cuomo K M, Oppenheim A V and Strogatz S H 1993 IEEE Trans. Circ. Syst. Ⅱ 40 626
|
[8] |
Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Courier Dover Publications)
|
[9] |
Duane G S, Webster P J and Weiss J B 1999 J. Atmos. Sci. 56 4183
|
[10] |
Yanchuk S, Stefanski A, Kapitaniak T and Wojewoda J 2006 Phys. Rev. E 73 016209
|
[11] |
Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
|
[12] |
Huang L, Chen Q, Lai Y C and Pecora L M 2009 Phys. Rev. E 80 036204
|
[13] |
Huang L, Lai Y C, Park K, Wang X G, Lai C H and Gatenby R 2007 Frontiers of Physics in China 2 446
|
[14] |
Yang J, Hu G and Xiao J 1998 Phys. Rev. Lett. 80 496
|
[15] |
Fu C B, Zhang H, Zhan M and Wang X G 2012 Phys. Rev. E 85 066208
|
[16] |
Fu C B, Deng Z G, Huang L and Wang X G 2013 Phys. Rev. E 87 032909
|
[17] |
Liu Z H, Zhou J and Munakata T 2009 Euro. Phys. Lett. 87 50002
|
[18] |
Liu Z H and Zhou J 2008 Phys. Rev. E 77 056213
|
[19] |
Glass L and Belair J 1986 Lect. Notes. Biomath. 66 232
|
[20] |
Fang J Q, Luo X S, Wang B H and Zhao Y B 2005 Acta Phys. Sin. 54 5022 (in Chinese)
|
[21] |
He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W and Christiansen B 1994 Physica D 79 335
|
[22] |
Dai J, Chu X S and He D R 2006 Acta Phys. Sin. 55 3979 (in Chinese)
|
[23] |
He D R, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B and Wang B H 1992 Phys. Lett. A 171 61
|
[24] |
Qu S X, Lu Y Z, Zhang L and He D R 2008 Chin. Phys. B 17 4418
|
[25] |
Qu S X, Christiansen B and He D R 1995 Phys. Lett. A 201 61
|
[26] |
Qu S X, Wu S G and He D R 1998 Phys. Rev. E 57 402
|
[27] |
He D R, Ding E J, Bauer M, Habip S, Krueger U, Martienssen W and Christiansen B 1994 Euro. Phys. Lett. 26 165
|
[28] |
Wang C J, Yang K L and Qu S X 2013 Chin. Phys. B 22 030502
|
[29] |
Pereira R F, Viana R L, Lopes S R, Verg'es M C and de Pinto S S E 2011 Phys. Rev. E 83 037201
|
[30] |
Akaishi A and Shudo A 2009 Phys. Rev. E 80 066211
|
[31] |
Miyaguchi T and Aizawa Y 2007 Phys. Rev. E 75 066201
|
[32] |
dos Santos A M, Viana R L, Lopes S R, de Pinto S E S and Batista A M 2006 Physica A 367 145
|
[33] |
Zou H L, Guan S G and Lai C H 2009 Phys. Rev. E 80 046214
|
[34] |
Tan H F, Jin T and Qu S X 2012 Acta Phys. Sin. 61 040507 (in Chinese)
|
[35] |
Kaneko K 1989 Physica D 34 1
|
[36] |
Qu Z L, Hu G, Ma B and Tian G 1994 Phys. Rev. E 50 163
|
[37] |
Willeboordse F H 1993 Phys. Lett. A 183 187
|
[38] |
Ibarz B, Casado J M and Sanjuan M A F 2011 Phys. Rep. 501 1
|
[39] |
Girardi-Schappo M, Tragtenberg M H R and Kinouchi O 2013 J. Neurosci. Meth. 220 116
|
[40] |
Kuramoto Y and Nishikawa I 1987 J. Stat. Phys. 49 1
|
[41] |
Hu B and Liu Z H 2000 Phys. Rev. E 62 2114
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|