Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127101    DOI: 10.1088/1674-1056/20/12/127101

Valence band structure and density of states effective mass model of biaxial tensile strained silicon based on k·p theory

Kuang Qian-Wei, Liu Hong-Xia, Wang Shu-Long, Qin Shan-Shan, Wang Zhi-Lin
School of Microelectronics, Key Laboratory of Ministry of Education of Wide Band-Gap Semiconductor Technology, Xidian University, Xi'an 710071, China
Abstract  After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k·p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal-oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design.
Keywords:  k·p theory      valance band      biaxial tensile strained Si      density of state effective mass  
Received:  31 May 2011      Revised:  19 September 2011      Published:  15 December 2011
PACS:  71.20.Eh (Rare earth metals and alloys)  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60976068 and 60936005) and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (Grant No. 78083).

Cite this article: 

Kuang Qian-Wei, Liu Hong-Xia, Wang Shu-Long, Qin Shan-Shan, Wang Zhi-Lin Valence band structure and density of states effective mass model of biaxial tensile strained silicon based on k·p theory 2011 Chin. Phys. B 20 127101

[1] Hu H Y, Zhang H M, Dai X Y and Lü Y 2004 Chin. Phys. 12 295
[2] Qin S S, Zhang H M, Hu H Y, Dai X Y, Xuan R X and Shu B 2010 Chin. Phys B 19 117309
[3] Jiang T, Zhang H M, Wang W, Hu H Y and Dai X Y 2006 Chin. Phys. 15 1339
[4] Zhang Z F, Zhang H M, Hu H Y, Xuan R X and Song J J 2009 Acta Phys. Sin. 57 4667 (in Chinese)
[5] Schäffler F 1997 Semicond. Sci. Technol. 12 1515
[6] Maiti C, Bera L and Chattopadhyay S 1996 Semicond. Sci. Technol. 13 1225
[7] Hoyt J, Nayfeh H, Eguchi S, Aberg I, Xia G, Drak T, Fitzgerald E and Antoniadis D 2002 IEDM 23 26
[8] Lee M, Fitzgerald E, Bulsara M, Currie M and Lochtefeld A 2005 J. Appl. Phys. 97 011101
[9] Sun Y, Thompson S E and Nishida T 2007 J. Appl. Phys. 101 104503
[10] Thompson S E, Sun G, Wu K, Lim J and Nishida T 2004 IEDM Tech. Dig. p. 221
[11] Thompson S E, Sun G, Choi Y S and Nishida T 2006 IEEE Trans. Electron Dev. 53 1010
[12] Fischetti M V and Laux S E 1996 J. Appl. Phys. 80 2234
[13] Sechler E E 1952 Elasticity in Engineering (New York: John Wiley & Sons) p. 362
[14] Herbert R and Pawlik P S 1980 Elasticity: Theory and Application (New York: John Wiley & Sons) p. 213
[15] Shockley W and Bardeen J 1950 Phys. Rev. 78 173
[16] Dresselhaus G, Kip A F and Kittel C 1955 Phys. Rev. 98 368
[17] Luttinger J M and Kohn W 1955 Phys. Rev. 97 869
[1] Crystal structure and electromagnetic responses of tetragonal GdAlGe
Cong Wang(王聪), Yong-Quan Guo(郭永权), Tai Wang(王泰), and Shuo-Wang Yang(杨硕望). Chin. Phys. B, 2020, 29(12): 127502.
[2] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[3] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
[4] Large reversible magnetocaloric effect induced by metamagnetic transition in antiferromagnetic HoNiGa compound
Yi-Xu Wang(王一旭), Hu Zhang(张虎), Mei-Ling Wu(吴美玲), Kun Tao(陶坤), Ya-Wei Li(李亚伟), Tim Yan(颜天宝), Ke-Wen Long(龙克文), Teng Long(龙腾), Zheng Pang(庞铮), Yi Long(龙毅). Chin. Phys. B, 2016, 25(12): 127104.
[5] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
[6] Band-gap engineering of La1-xNdxAlO3 (x = 0, 0.25, 0.50, 0.75, 1) perovskite using density functional theory: A modified Becke Johnson potential study
Sandeep, D P Rai, A Shankar, M P Ghimire, Anup Pradhan Sakhya, T P Sinha, R Khenata, S Bin Omran, R K Thapa. Chin. Phys. B, 2016, 25(6): 067101.
[7] Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals
Ling-Wei Li(李领伟). Chin. Phys. B, 2016, 25(3): 037502.
[8] Effects of oxidation of DyH3 in Nd-Fe-B sintered magnets
Yan Gao-Lin, Fang Zhi-Hao. Chin. Phys. B, 2015, 24(10): 107503.
[9] Coexistence of positive and negative magnetic entropy changes in CeMn2(Si1-xGex)2 compounds
Zuo Wen-Liang, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Chin. Phys. B, 2015, 24(9): 097104.
[10] Enhanced coercivity and remanence of PrCo5 nanoflakes prepared by surfactant-assisted ball milling with heat-treated starting powder
Zuo Wen-Liang, Zhao Xin, Xiong Jie-Fu, Shang Rong-Xiang, Zhang Ming, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Chin. Phys. B, 2015, 24(7): 077103.
[11] Effect of optimized aging processing on properties of the sintered Dy-doped Nd-Fe-B permanent magnet
Wang Xiao-Li, Zhao Li-Na, Ding Kai-Hong, Cui Sheng-Li, Sun Yong-Cong, Li Mu-Sen. Chin. Phys. B, 2015, 24(3): 037506.
[12] First-principles calculations of electronic and magnetic properties of CeN:The LDA+U method
Hao Ai-Min, Bai Jing. Chin. Phys. B, 2013, 22(10): 107102.
[13] On the fluorescence enhancement mechanism of Er3+ in germanate glass containing silver particles
Li Xiang-Ping, Chen Bao-Jiu, Shen Ren-Sheng, Zhang Jin-Su, Sun Jia-Shi, Cheng Li-Hong, Zhong Hai-Yang, Tian Yue, Fu Shao-Bo, Du Guo-Tong. Chin. Phys. B, 2013, 22(2): 023202.
[14] First-principles study of the local structure and crystal field of Yb2+ in sodium and potassium halides
Wen Jun,Duan Chang-Kui,Yin Min,Yu. V. Orlovskii,Xia Shang-Da,Zhang Yong-Fan. Chin. Phys. B, 2012, 21(3): 037102.
[15] Simulation of the f–d transitions of lanthanide ions in YPO4 using quantum-chemical calculations
Hu Liu-Sen, Wen Jun, Yin Min, Xia Shang-Da. Chin. Phys. B, 2012, 21(1): 017801.
No Suggested Reading articles found!