Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 117201    DOI: 10.1088/1674-1056/20/11/117201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Superexchange interaction enhancement of the quantum transport in a DNA-type molecule

Wang Rui(王瑞), Zhang Cun-Xi(张存喜), Zhou Yun-Qing(周运清), and Kong Ling-Min(孔令民)
Physics Department, Zhejiang Ocean University, Zhoushan 316000, China
Abstract  We use the transfer matrix method and the Green function technique to theoretically study the quantum tunnelling through a DNA-type molecule. Ferromagnetic electrodes are used to produce the spin-polarized transmission probability and therefore the spin current. The distance-dependent crossover comes from the topological variation from the one-dimensional to the two-dimensional model transform as we switch on the interstrand coupling; a new base pair will present N-1 extrachannels for the charge and spin as N being the total base pairs. This will restrain the decay of the transmission and improve the stability of the quantum transport. The spin and charge transfer through the DNA-type molecule is consistent with the quantum tunneling barrier.
Keywords:  quantum transport      DNA      superexchange  
Received:  06 July 2011      Revised:  31 August 2011      Accepted manuscript online: 
PACS:  72.25.-b (Spin polarized transport)  
  73.21.La (Quantum dots)  
  87.14.gk (DNA)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6110250 and Y201018926).

Cite this article: 

Wang Rui(王瑞), Zhang Cun-Xi(张存喜), Zhou Yun-Qing(周运清), and Kong Ling-Min(孔令民) Superexchange interaction enhancement of the quantum transport in a DNA-type molecule 2011 Chin. Phys. B 20 117201

[1] Braun E and Keren K 2004 Adv. Phys. 53 441
[2] Anderson J, Lorenz C and Travesset A 2008 J. Chem. Phys. 128 184906
[3] Daniels B C, Forth S, Sheinin M Y,Wang M D and Sethna J P 2009 Phys. Rev. E 80 040901(R)
[4] Qi R, Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett. 102 185301
[5] Wang X F and Chakraborty T 2006 Phys. Rev. Lett. 97 106602
[6] Li Z J 2005 Chin. Phys. 14 2100
[7] Holste D, Grosse I, Beirer S, Schieg P and Herzel H 2003 Phys. Rev. E 67 061913
[8] Roche S, Bicout D, Macia E and Kats E 2003 Phys. Rev. Lett. 91 228101
[9] Largo J, Starr F and Sciortino F 2007 Langmuir 23 5896
[10] Dai W, Hsu C W, Sciortino F and Starr F W 2010 Langmuir 26 3601
[11] Orellana P A, Dominguez-Adame F, Gomez I, Ladron M L and de Guevara M L L 2003 Phys. Rev. B 67 085321
[12] Sun Q F, Guo H and Wang J 2003 Phys. Rev. Lett. 90 258301
[13] Dong B, Cui H L and Lei X L 2005 Phys. Rev. Lett. 94 066601
[14] Ji A C, Sun Q, Xie X C and Liu W M 2009 Phys. Rev. Lett. 102 023602
[15] Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408
[16] Holleitner A W, Blick R H, Huttel A K, Ebert K and Kottaus J P 2002 Science 297 70
[17] Wang B G, Wang J and Guo H 2003 Phys. Rev. B 67 92408
[18] Xu H Q 2002 Phys. Rev. B 66 165305
[19] Žutić I, Fabian J and das Sarma S 2004 Rev. Mod. Phys. 76 323
[20] Wang J M, Wang R and Liang J Q 2007 Chin. Phys. 16 2075
[21] Wang J M, Wang R, Zhang Y P and Liang J Q 2007 Chin. Phys. 16 2069
[22] Berlin Y A, Burin L A and Ratner M A 2002 Chem. Phys. 275 61
[23] Jortner J, Bixon M, Voityuk A A and Rösch N 2002 J. Phys. Chem. A 106 7599
[24] Kelley S O and Barton J K 1999 Science 283 375
[25] Barnett R N, Cleveland C L, Joy A, Landman U and Schuster B G 2001 Science 294 567
[26] Giese B, Amaudrut J, Köhler A, Spormann M and Wessely S 2001 Nature 412 318
[27] Renger T and Marcus R A 2003 J. Phys. Chem. A 107 8404
[28] Treadway C, Hill M G and Barton J K 2002 Chem. Phys. 281 409
[29] Bicout D J and Kats E 2002 Phys. Lett. A 300 479
[30] Rechendorff K, Witz G, Adamcik J and Dietlera G 2009 J. Chem. Phys. 131 095103
[31] Maciá E, Triozon F and Roche S 2005 Phys. Rev. B 71 113106
[32] Carpena P, Bernaola-Galvan P, Ivanov P Ch and Stanley H E 2002 Nature 418 955
[33] Roche S and Maciá E 2004 Mod. Phys. Lett. B 18 847
[34] Porath D, Bezryadin A, de Vries S and Dekker C 2000 Nature 403 635
[1] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[6] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[7] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[8] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[9] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[10] Diffusion of nucleotide excision repair protein XPA along DNA by coarse-grained molecular simulations
Weiwei Zhang(张伟伟) and Jian Zhang(张建). Chin. Phys. B, 2021, 30(10): 108703.
[11] Oxidation degree dependent adsorption of ssDNA onto graphene-based surface
Huishu Ma(马慧姝), Jige Chen(陈济舸), Haiping Fang(方海平), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2021, 30(10): 106806.
[12] Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明). Chin. Phys. B, 2021, 30(10): 107504.
[13] Effect of interaction between loop bases and ions on stability of G-quadruplex DNA
Han-Zhen Qiao(乔汉真), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松), and Cong-Min Ji(祭聪敏). Chin. Phys. B, 2021, 30(1): 018702.
[14] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[15] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
No Suggested Reading articles found!