Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 117201    DOI: 10.1088/1674-1056/20/11/117201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Superexchange interaction enhancement of the quantum transport in a DNA-type molecule

Wang Rui, Zhang Cun-Xi, Zhou Yun-Qing, Kong Ling-Min
Physics Department, Zhejiang Ocean University, Zhoushan 316000, China
Abstract  We use the transfer matrix method and the Green function technique to theoretically study the quantum tunnelling through a DNA-type molecule. Ferromagnetic electrodes are used to produce the spin-polarized transmission probability and therefore the spin current. The distance-dependent crossover comes from the topological variation from the one-dimensional to the two-dimensional model transform as we switch on the interstrand coupling; a new base pair will present N-1 extrachannels for the charge and spin as N being the total base pairs. This will restrain the decay of the transmission and improve the stability of the quantum transport. The spin and charge transfer through the DNA-type molecule is consistent with the quantum tunneling barrier.
Keywords:  DNA      superexchange      quantum transport     
Received:  06 July 2011      Published:  15 November 2011
PACS:  72.25.-b (Spin polarized transport)  
  73.21.La (Quantum dots)  
  87.14.gk (DNA)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6110250 and Y201018926).

Cite this article: 

Wang Rui, Zhang Cun-Xi, Zhou Yun-Qing, Kong Ling-Min Superexchange interaction enhancement of the quantum transport in a DNA-type molecule 2011 Chin. Phys. B 20 117201

[1] Braun E and Keren K 2004 Adv. Phys. 53 441
[2] Anderson J, Lorenz C and Travesset A 2008 J. Chem. Phys. 128 184906
[3] Daniels B C, Forth S, Sheinin M Y,Wang M D and Sethna J P 2009 Phys. Rev. E 80 040901(R)
[4] Qi R, Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett. 102 185301
[5] Wang X F and Chakraborty T 2006 Phys. Rev. Lett. 97 106602
[6] Li Z J 2005 Chin. Phys. 14 2100
[7] Holste D, Grosse I, Beirer S, Schieg P and Herzel H 2003 Phys. Rev. E 67 061913
[8] Roche S, Bicout D, Macia E and Kats E 2003 Phys. Rev. Lett. 91 228101
[9] Largo J, Starr F and Sciortino F 2007 Langmuir 23 5896
[10] Dai W, Hsu C W, Sciortino F and Starr F W 2010 Langmuir 26 3601
[11] Orellana P A, Dominguez-Adame F, Gomez I, Ladron M L and de Guevara M L L 2003 Phys. Rev. B 67 085321
[12] Sun Q F, Guo H and Wang J 2003 Phys. Rev. Lett. 90 258301
[13] Dong B, Cui H L and Lei X L 2005 Phys. Rev. Lett. 94 066601
[14] Ji A C, Sun Q, Xie X C and Liu W M 2009 Phys. Rev. Lett. 102 023602
[15] Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408
[16] Holleitner A W, Blick R H, Huttel A K, Ebert K and Kottaus J P 2002 Science 297 70
[17] Wang B G, Wang J and Guo H 2003 Phys. Rev. B 67 92408
[18] Xu H Q 2002 Phys. Rev. B 66 165305
[19] Žutić I, Fabian J and das Sarma S 2004 Rev. Mod. Phys. 76 323
[20] Wang J M, Wang R and Liang J Q 2007 Chin. Phys. 16 2075
[21] Wang J M, Wang R, Zhang Y P and Liang J Q 2007 Chin. Phys. 16 2069
[22] Berlin Y A, Burin L A and Ratner M A 2002 Chem. Phys. 275 61
[23] Jortner J, Bixon M, Voityuk A A and Rösch N 2002 J. Phys. Chem. A 106 7599
[24] Kelley S O and Barton J K 1999 Science 283 375
[25] Barnett R N, Cleveland C L, Joy A, Landman U and Schuster B G 2001 Science 294 567
[26] Giese B, Amaudrut J, Köhler A, Spormann M and Wessely S 2001 Nature 412 318
[27] Renger T and Marcus R A 2003 J. Phys. Chem. A 107 8404
[28] Treadway C, Hill M G and Barton J K 2002 Chem. Phys. 281 409
[29] Bicout D J and Kats E 2002 Phys. Lett. A 300 479
[30] Rechendorff K, Witz G, Adamcik J and Dietlera G 2009 J. Chem. Phys. 131 095103
[31] Maciá E, Triozon F and Roche S 2005 Phys. Rev. B 71 113106
[32] Carpena P, Bernaola-Galvan P, Ivanov P Ch and Stanley H E 2002 Nature 418 955
[33] Roche S and Maciá E 2004 Mod. Phys. Lett. B 18 847
[34] Porath D, Bezryadin A, de Vries S and Dekker C 2000 Nature 403 635
[1] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[2] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[3] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[4] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[5] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[6] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华), Xiao-Fang Peng(彭小芳), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[7] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[8] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[9] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[10] New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding
Xing-Yuan Wang(王兴元), Jun-Jian Zhang(张钧荐), Fu-Chen Zhang(张付臣), Guang-Hui Cao(曹光辉). Chin. Phys. B, 2019, 28(4): 040504.
[11] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[12] Interaction between human telomeric G-quadruplexes characterized by single molecule magnetic tweezers
Yi-Zhou Wang(王一舟), Xi-Miao Hou(侯锡苗), Hai-Peng Ju(车海鹏), Xue Xiao(肖雪), Xu-Guang Xi(奚绪光), Shuo-Xing Dou(窦硕星), Peng-Ye Wang(王鹏业), Wei Li(李伟). Chin. Phys. B, 2018, 27(6): 068701.
[13] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
[14] Computational mechanistic investigation of radiation damage of adenine induced by hydroxyl radicals
Rongri Tan(谈荣日), Huixuan Liu(刘慧宣), Damao Xun(寻大毛), Wenjun Zong(宗文军). Chin. Phys. B, 2018, 27(2): 027102.
[15] Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries
Zhizhou Yu(俞之舟), Fuming Xu(许富明). Chin. Phys. B, 2018, 27(12): 127203.
No Suggested Reading articles found!