Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 014601    DOI: 10.1088/1674-1056/20/1/014601
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Anisotropic character of atoms in a two-dimensional Frenkel–Kontorova model

Duan Wen-Shana, Shi Yu-Rena, Wang Cang-Longb, Chen Jian-Minc
a College of Physics and Electronic Engineering, Northwest Normal University, and Laboratory of Atomic and Molecular Physics in Lanzhou, Lanzhou 730070, China; b College of Physics and Electronic Engineering, Northwest Normal University, and Laboratory of Atomic and Molecular Physics in Lanzhou, Lanzhou 730070, China;Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; c State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract  The dynamics of a certain density of interacting atoms arranged on a two-dimensional square lattice, which is made to slide over a two-dimensional periodic substrate potential with also the quare lattice symmetry, in the presence of dissipation, by an externally applied driving force, is studied. By rotating the misfit angle θ, the dynamical behaviour displays two different tribological regimes: one is smooth, the other becomes intermittent. We comment both on the nature of the atomic dynamics in the locked-to-sliding transition, and on the dynamical states displayed during the atom motion at different values of the driving force. In tribological applications, we also investigate how the main model parameters such as the stiffness strength and the magnitude of the adhesive force affect the static friction of the system. In particular, our simulation indicates that the superlubricity will appear.
Keywords:  nanotribology      Frenkel–Kontorova model      phase transitions  
Received:  03 May 2010      Revised:  02 September 2010      Published:  15 January 2011
PACS:  46.50.+a (Fracture mechanics, fatigue and cracks)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
  45.20.D- (Newtonian mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875098), the Natural Science Foundation of Northwest Normal University, China (Grant Nos. NWNU-KJCXGC-03-48 and NWNU-KJCXGC-03-17), and the Domestic Visiting Scholars Program of the Doctoral Candidates of Northwest Normal University, China.

Cite this article: 

Wang Cang-Long, Duan Wen-Shan, Chen Jian-Min, Shi Yu-Ren Anisotropic character of atoms in a two-dimensional Frenkel–Kontorova model 2011 Chin. Phys. B 20 014601

[1] Blatter G, Feigel'man M V, Geshkenbein G B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[2] Marley A C, Higgins M J and Bhattacharya S 1995 Phys. Rev. Lett. 74 3029
[3] Persson B N J 2000 Sliding Friction (Berlin: Springer) 2nd ed
[4] Daly C and Krim J 1996 Phys. Rev. Lett. 76 803
[5] Gao J P, Luedtke W D and Landman U 1998 J. Phys. Chem. B 102 5033
[6] Volokitin A I and Person B N J 2003 Phys. Rev. Lett. 91 106101
[7] Persson B N J, Albohr O, Tartaglino U, Volokitin A I and Tosatti E 2005 J. Phys.: Condens. Matter 17 R1
[8] Shinjo K and Hirano M 1993 Surf. Sci. 283 473
[9] Hirano M and Shinjo K 1990 Phys. Rev. B 41 11837
[10] Hirano M 2003 Wear 254 932
[11] Wenning L and Muser M H 2001 Europhys. Lett. 54 693
[12] Lin M M, Duan W S and Chen J M 2010 Chin. Phys. B 19 026201
[13] Tartaglino U, Samoliov V N and Persson B N J 2006 J. Phys.: Condens. Matter 18 4143
[14] Jabbarzadeh A, Harrowell R and Tanner A I 2005 Phys. Rev. Lett. 2005 95 126103
[15] Erdemir A 2001 Surf. Coat. Technol. 146 292
[16] Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W M, Heimberg J A and Zandbergen H W 2004 Phys. Rev. Lett. 92 126101
[17] Socoliuc A, Bennewitz R, Gnecco E and Meyer E 2004 Phys. Rev. Lett. 92 134301
[18] Erdemir A 2004 Surf. Coat. Technol. 188 588
[19] Maier S, Sang Y, Filleter T, Grant M, Bennewitz R, Gnecco E and Meyer E 2005 Phys. Rev. B 72 245418
[20] Kano M, Yasuda Y, Okamoto Y, Mabuchi Y and Hamada T 2005 Tribol. Lett. 18 245
[21] Bec S, Tonck A and Fontaine J 2006 Philos. Mag. 86 5465
[22] Muser M H 2004 Europhys. Lett. 66 97
[23] Qi Y, Cheng Y T, Ca"gin T and William A 2002 Phys. Rev. B 66 085420
[24] Muser M H, Urbakh M and Robbins M O 2003 Adv. Chem. Phys. 126 187
[25] Muser M H, Wenning L and Robbins M O 2001 Phys. Rev. Lett. 86 1295
[26] Braun O M, Bishop A R and R"oder J 1997 Phys. Rev. Lett. 79 3692
[27] Zheng Z G, Hu B and Hu G 1998 Phys. Rev. B 58 5453
[28] Guo Y, Qu Z H and Zhang Z Y 2006 Phys. Rev. B 73 094118
[29] Gao X X, Hong X R Wang C L and Duan W S 2008 Chin. Phys. B 17 3378
[30] Tsironis G P, Bishop A R, Savin A V, Zolotaryuk A V 1999 Phys. Rev. E 60 6610
[31] Vanossi A, Bishop A R, Franchini A and Bortolani V 2004 Surf. Sci. 566 816
[32] Vanossi A, R"oder J, Bishop A R and Bortolani V 2003 Phys. Rev. E 67 016605
[33] Reichhardt C, Olson C J and Nori F 1997 Phys. Rev. Lett. 78 2648
[34] Tekic J, Braun O M and Hu B 2005 Phys. Rev. E 71 026104
[35] Wang C L, Duan W S, Chen J M and Hong X R 2008 Appl. Phys. Lett. 93 153116
[36] Sasaki N, Kobayashi K and Tsukada M 1996 Phys. Rev. B 54 2138
[37] Weiss M and Elmer F J 1996 Phys. Rev. B 53 7539
[38] Hirano M, Shinjo K, Kaneko R and Murata Y 1991 Phys. Rev. Lett. bf67 2642
[39] Hirano M, Shinjo K, Kaneko R and Murata Y 1997 Phys. Rev. Lett. 78 1448
[40] Dienwiehel M, Verhoeven G S, Pradeep N, Frenken J W M, Heimberg J A and Zandbergen H W 2004 Phys. Rev. Lett. 92 126101
[1] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[2] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[3] Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks
M Kurt, H Yurtseven, A Kurt, S Aksoy. Chin. Phys. B, 2019, 28(6): 066401.
[4] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[5] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[6] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[7] High pressure electrical transport behavior in SrF2 nanoplates
Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2017, 26(4): 046401.
[8] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
[9] Fidelity spectrum: A tool to probe the property of a quantum phase
Wing Chi Yu, Shi-Jian Gu. Chin. Phys. B, 2016, 25(3): 030501.
[10] Carrier behavior of HgTe under high pressure revealed by Hall effect measurement
Hu Ting-Jing, Cui Xiao-Yan, Li Xue-Fei, Wang Jing-Shu, Lü Xiu-Mei, Wang Ling-Sheng, Yang Jing-Hai, Gao Chun-Xiao. Chin. Phys. B, 2015, 24(11): 116401.
[11] Phase behaviors of binary mixtures composed of banana-shaped and calamitic mesogens
M. Cvetinov, D. Ž. Obadović, M. Stojanović, A. Vajda, K. Fodor-Csorba, N. Eber, I. Ristić. Chin. Phys. B, 2014, 23(9): 096402.
[12] Nonequilibrium behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model
Ümüt Temizer. Chin. Phys. B, 2014, 23(7): 070511.
[13] Characteristics of phase transitions via intervention in random networks
Jia Xiao, Hong Jin-Song, Yang Hong-Chun, Yang Chun, Shi Xiao-Hong, Hu Jian-Quan. Chin. Phys. B, 2014, 23(7): 076401.
[14] Dielectric and infrared properties of SrTiO3 single crystal doped by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions
S. Maletic, D. Maletic, I. Petronijevic, J. Dojcilovic, D. M. Popovic. Chin. Phys. B, 2014, 23(2): 026102.
[15] Critical exponents of ferroelectric transitions in modulated SrTiO3:Consequences of quantum fluctuations and quenched disorder
Wang Jing-Xue, Liu Mei-Feng, Yan Zhi-Bo, Liu Jun-Ming. Chin. Phys. B, 2013, 22(7): 077701.
No Suggested Reading articles found!