Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090601    DOI: 10.1088/1674-1056/19/9/090601
GENERAL Prev   Next  

A super-high resolution frequency standard measuring approach based on phase coincidence characteristics between signals

Li Zhi-Qi, Zhou Wei, Chen Fa-Xi, Liu Chen-Guang
Department of Measurement and Instrument, Xidian University, Xi'an 710071, China
Abstract  A method for super high resolution comparison measurement is proposed in this paper with a comparison between the frequency standards of different nominal frequencies, which is based on phase coincidence detection of the two compared signals. It utilizes the regular phase shift characteristics between the signals. The resolution of the measurement approach can reach 10-13/s at 5 MHz, and the self-calibration resolution can achieve 10-14/s in the comparison between 10 MHz and 100 MHz, or even can reach 10-15/s in the comparison between 10 MHz and 190 MHz. This method implies significant progress in the development of the high precision frequency standard comparison technology.
Keywords:  frequency measurement      resolution      phase coincidence      equivalent phase comparison frequency     
Received:  20 November 2009      Published:  15 September 2010
PACS:  0630F  
  0750  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.60772135 and 10978017), the Open Fund of Key Laboratory of Precision Navigation and Technology, National Time Service Center, Chinese Academy of Sciences (Grant No.2009PNTT10), and the Fundamental Research Funds for the Central Universities, China (Grant No. JY10000905015).

Cite this article: 

Li Zhi-Qi, Zhou Wei, Chen Fa-Xi, Liu Chen-Guang A super-high resolution frequency standard measuring approach based on phase coincidence characteristics between signals 2010 Chin. Phys. B 19 090601

[1] Zhou W, Xuan Z Q and Yu J G 1995 Proc. 1995 IEEE Int. Frequency Control Symposium San Francisco, USA, May 31-June 2, 1995, p354
[2] Wang Z H, Wei Z Y, Teng H, Wang P and Zhang J 2003 Acta Phys. Sin. 52 362 (in Chinese)
[3] Howe D A and Allan D W 1981 Proc. 35th Annual Frequency Control Symposium Philadelphia, USA, May 27--29, 1981, p470
[4] Zhou W, Zhou H, Fan W J, Wang H, Qian S X and Jiang W N 2008 Proc. 2008 IEEE Int. Frequency Control Symposium Honolulu, USA, May 19--21, 2008, p468
[5] Du B Q, Zhou W, Dong S F and Zhou H N 2009 Chin. Phys. Lett. 26 070602
[6] Allan D W 1987 IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control 34 647
[7] Zhou W, Zheng S F, Li Z Q, Zhou H and Wang C X 2007 Proc. 2007 IEEE Int. Frequency Control Symposium Geneva, Switzerland, May 29-June 1, p811
[8] Ren H X and Hao Y 2000 Acta Phys. Sin. 49 1683 (in Chinese)
[9] Xin X J 1976 Acta Phys. Sin. 25 10 (in Chinese)
[10] Xin X J 1957 Acta Phys. Sin. 13 500 (in Chinese)
[11] Zhou W and Li Z Q 2009 China Time and Frequency Symposium Chengdu, China Oct. 21--24, 2009, p310 endfootnotesize
[1] Improved spatial filtering velocimetry and its application in granular flow measurement
Ping Kong(孔平), Bi-De Wang(王必得), Peng Wang(王蓬), Zivkovic V, Jian-Qing Zhang(张建青). Chin. Phys. B, 2020, 29(7): 074201.
[2] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[3] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[4] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[5] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[6] Enhancement of MAD/MIR phasing at low resolution and a new procedure for automatic phase extension
Pu Han(韩普), Yuan-Xin Gu(古元新), Wei Ding(丁玮), Hai-Fu Fan(范海福). Chin. Phys. B, 2019, 28(7): 076108.
[7] Enhancement of spatial resolution of ghost imaging via localizing and thresholding
Yunlong Wang(王云龙), Yingnan Zhou(周英男), Shaoxiong Wang(王少雄), Feiran Wang(王斐然), Ruifeng Liu(刘瑞丰), Hong Gao(高宏), Pei Zhang(张沛), Fuli Li(李福利). Chin. Phys. B, 2019, 28(4): 044202.
[8] PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces
San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和). Chin. Phys. B, 2019, 28(2): 026801.
[9] Wide color gamut switchable autostereoscopic 3D display based on directional quantum-dot backlight
Bin Xu(徐斌), Xue-Ling Li(李雪玲), Yuan-Qing Wang(王元庆). Chin. Phys. B, 2019, 28(12): 124208.
[10] Ultra-fast x-ray-dynamic experimental subsystem
Liming Chen(陈黎明), Xin Lu(鲁欣), Dazhang Li(李大章), Yifei Li(李毅飞). Chin. Phys. B, 2018, 27(7): 074101.
[11] Enhanced transient photovoltaic characteristics of core-shell ZnSe/ZnS/L-Cys quantum-dot-sensitized TiO2 thin-film
Kui-Ying Li(李葵英), Lun Ren(任伦), Tong-De Shen(沈同德). Chin. Phys. B, 2018, 27(6): 067305.
[12] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[13] Quantitative HRTEM and its application in the study of oxide materials
Chun-Lin Jia(贾春林), Shao-Bo Mi(米少波), Lei Jin(金磊). Chin. Phys. B, 2018, 27(5): 056803.
[14] High-resolution electron microscopy for heterogeneous catalysis research
Yong Zhu(朱勇), Mingquan Xu(许名权), Wu Zhou(周武). Chin. Phys. B, 2018, 27(5): 056804.
[15] Areal density and spatial resolution of high energy electron radiography
Jiahao Xiao(肖家浩), Zimin Zhang(张子民), Shuchun Cao(曹树春), Ping Yuan(袁平), Xiaokang Shen(申晓康), Rui Cheng(程锐), Quantang Zhao(赵全堂), Yang Zong(宗阳), Ming Liu(刘铭), Xianming Zhou(周贤明), Zhongping Li(李中平), Yongtao Zhao(赵永涛), Chuanxiang Tang(唐传祥), Wenhui Huang(黄文会), Yingchao Du(杜应超), Wei Gai(盖炜). Chin. Phys. B, 2018, 27(3): 035202.
No Suggested Reading articles found!