Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 084205    DOI: 10.1088/1674-1056/19/8/084205

Degree of fourth-order coherence by double Hanbury Brown–Twiss detections

Zhang Yu-Chi, Li Yuan, Guo Yan-Qiang, Li Gang, Wang Jun-Min, Zhang Tian-Cai
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  Photon quantum statistics of light can be shown by the high-order coherence. The fourth-order coherences of various quantum states including Fock states, coherent states, thermal states and squeezed vacuum states are investigated based on a double Hanbury Brown–Twiss (HBT) scheme. The analytical results are obtained by taking the overall efficiency and background into account.
Keywords:  fourth-order coherence      quantum state      single-photon counting  
Received:  27 October 2009      Revised:  20 January 2010      Accepted manuscript online: 
PACS:  42.50.Ar  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974125 60821004, 60808006, 60978017 and 60578018), and the State Basic Key Research Program of China (Grant No. 2006CB921102).

Cite this article: 

Zhang Yu-Chi, Li Yuan, Guo Yan-Qiang, Li Gang, Wang Jun-Min, Zhang Tian-Cai Degree of fourth-order coherence by double Hanbury Brown–Twiss detections 2010 Chin. Phys. B 19 084205

[1] Hanbury-Brown R and Twiss R Q 1956 Nature 178 1046
[2] Glauber R J 1965 Quantum Optics and Electronics (New York: Gordon and Breach) p. 63
[3] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[4] McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2003 Nature 425 268
[5] Ourjoumtsev A, Brouri R T, Laurat J and Grangier P 2006 Science 312 83
[6] Wakui K, Takahashi H, Furusawa A and Sasaki M 2007 Opt. Express 15 3568
[7] Lu C Y, Zhou X Q, Guhne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T and Pan J W 2007 Nature Phys. 3 91
[8] Glauber R J 1963 Phys. Rev. 130 2529
[9] Titulaer U M and Glauber R J 1965 Phys. Rev. 140 B676
[10] Zhang J X, He L X, Zhang T C, Xie C D and Peng K C 1999 Acta Phys. Sin. 48 1230 (in Chinese)
[11] Campos, Richard A, Saleh, Bahaa E A, Teich and Malvin C 1990 Phys. Rev. A 42 4127
[12] Rarity J G and Tapster P R 1989 J. Opt. Soc. Am. B 6 1221
[13] Ou Z Y and Mandel L 1988 Phys. Rev. Lett. 61 50
[14] Wang R P and Zhang H R 2008 Chin. Phys. B 17 194
[15] Liu Q, Chen X H, Luo K H, Wu W and Wu L A 2009 Phys. Rev. A 79 053844
[16] Li G, Zhang T C, Li Y and Wang J M 2005 Phys. Rev. A 71 023807
[17] Li Y, Li G, Zhang Y C, Wang X Y, Wang J M and Zhang T C 2006 Acta Phys. Sin. 56 5779 (in Chinese)
[18] Rosenberg D, Lita A E, Miller A J and Nam S W 2005 Phys. Rev. A 71 061803(R)
[19] Li Y, Zhang Y C, Zhang P F, Guo Y Q, Li G, Wang J M and Zhang T C 2009 Chin. Phys. Lett. 26 074205
[20] Li Y, Li G, Zhang Y C, Wang X Y, Zhang J, Wang J M and Zhang T C 2007 Phys. Rev. A 76 013829
[21] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p. 623
[22] Abate J A, Kimble H J and Mandel L 1976 Phys. Rev. A 14 788
[23] Wildfeuer C F, Pearlman A J, Chen J, Fan J Y, Migdall A and Dowling J P 2009 Phys. Rev. A 80 043822
[24] Brown K R, Dani K M, Stamper-Kurn D M and Whaley K B 2003 Phys. Rev. A 67 043818
[25] Varcoe B T H, Brattke S and Walther H 2004 New J. Phys. 6 97
[26] Mahran M H and Satyanarayana M V 1986 Phys. Rev. A 34 640
[27] Zhang T C, Zhang J X, Xie C D and Pend K C 1998 Acta Phys. Sin. (Overseas Edition) 7 340
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[3] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[4] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[5] Statistics of states generated by quantum-scissors device
Ming-Hao Wang(王明浩), Guo-An Yan(闫国安). Chin. Phys. B, 2019, 28(3): 030302.
[6] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[7] Separability criteria based on Heisenberg-Weyl representation of density matrices
Jingmei Chang(常景美), Meiyu Cui(崔美钰), Tinggui Zhang(张廷桂), Shao-Ming Fei(费少明). Chin. Phys. B, 2018, 27(3): 030302.
[8] Detecting high-dimensional multipartite entanglement via some classes of measurements
Lu Liu(刘璐), Ting Gao(高亭), Fengli Yan(闫凤利). Chin. Phys. B, 2018, 27(2): 020306.
[9] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[10] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[11] Quantum information transfer between topological and conventional charge qubits
Jun Li(栗军) and Yan Zou(邹艳). Chin. Phys. B, 2016, 25(2): 027302.
[12] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling, Chen Mei-Feng. Chin. Phys. B, 2015, 24(7): 070310.
[13] High-dimensional quantum state transfer in a noisy network environment
Qin Wei, Li Jun-Lin, Long Gui-Lu. Chin. Phys. B, 2015, 24(4): 040305.
[14] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua, Hu Ju-Ju. Chin. Phys. B, 2014, 23(4): 040307.
[15] Quantum state measurement in double quantum dots with a radio-frequency quantum point contact
Yan Lei, Wang Hai-Xia, Yin Wen, Wang Fang-Wei. Chin. Phys. B, 2014, 23(2): 020305.
No Suggested Reading articles found!