Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 084202    DOI: 10.1088/1674-1056/19/8/084202
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

A novel orthogonally linearly polarized Nd:YVO4 laser

Yan Xing-Peng(闫兴鹏), Liu Qiang(柳强), Chen Hai-Long(陈海龙), Fu Xing(付星), Gong Ma-Li(巩马理), and Wang Dong-Sheng(王东生)
State Key Laboratory of Tribology, Center for Photonics and Electronics, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Abstract  We presented a novel orthogonally linearly polarized Nd:YVO4 laser. Two pieces of a-cut grown-together composite YVO4/Nd:YVO4 crystals were placed in the resonant cavity with the c-axis of the two crystals orthogonally. The polarization and power performance of the orthogonally polarized laser were investigated. A 26.2-W orthogonally linearly polarized laser was obtained. The power ratio between the two orthogonally polarized lasers was varied with the pump power caused by the polarized mode coupling. The longitudinal modes competition and the corresponding variable optical beats were also observed from the orthogonally polarized laser. We also adjusted the crystals with their c-axis parallele to each other, and a 40.7-W linearly polarized TEM00 laser was obtained, and the beam quality factors were Mx2=1.37 and My2=1.25.
Keywords:  orthogonally linearly polarized laser      composite Nd:YVO4      optical beat frequency  
Received:  28 January 2010      Revised:  16 March 2010      Accepted manuscript online: 
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.79.Gn (Optical waveguides and couplers)  
  42.81.Gs (Birefringence, polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50721004 and 60978032).

Cite this article: 

Yan Xing-Peng(闫兴鹏), Liu Qiang(柳强), Chen Hai-Long(陈海龙), Fu Xing(付星), Gong Ma-Li(巩马理), and Wang Dong-Sheng(王东生) A novel orthogonally linearly polarized Nd:YVO4 laser 2010 Chin. Phys. B 19 084202

[1] Zhang S and Li D 1988 Appl. Opt. 27 20
[2] Zhang S, Wu M and Jin G 1990 Appl. Opt. 29 1265
[3] Zhang J, Feng T, Zhang S and Jin G 1992 Appl. Opt. 31 6459
[4] Ding Y, Zhang S, Li Y, Zhu J, Du W and Suo R Opt. Eng. 42 2225
[5] Zhang S L, Du W H and Liu G 2005 Prog. Natrual Sci. 15 961
[6] Bian B and Guo G 1993 Journal of University of Science and Technology of China 23 404 (in Chinese)
[7] Keijserl R A J 1977 Opt. Commun. 23 194
[8] Jiang Y 1985 Ring Laser Gyroscope (Beijing: Tsinghua University Press) (in Chinese)
[9] Yang S and Zhang S 1988 Opt. Commun. 68 55
[10] Zhang S, Li M, Jin G and Wu M 1993 Opt. Commun. 96 245
[11] Zhang S and He W 1993 Opt. Commun. 97 210
[12] Chang L, Zhang S, Han Y and Li Y 2001 Chinese Journal of Lasers B 10 6 (in Chinese)
[13] Zhang S L, Xu T, Li Y and Zhu J 2004 Prog. Natural Sci. 14 145 (in Chinese)
[14] Tan Y and Zhang S 2007 Chin. Phys. Lett. 24 2590
[15] Tan Y and Zhang S 2009 Appl. Phys. B: Lasers Opt. 95 731
[16] O'Connor J R 1966 Appl. Phys. Lett. 9 407
[17] Koechner W 1999 Solid State Laser Engineering 5th ed. (Berlin: Springer)
[18] Fields R A, Birnbaum M and Fincher C L 1987 Appl. Phys. Lett. 51 1885
[19] Mukhopadhyay P K, Nautiyal A, Gupta P K, Ranganathan K, George J, Sharma S K and Nathan T P S 2003 Appl. Phys. B 77 81
[20] Czeranowsky C, Schmidt M, Heumann E, Huber G, Kutovoi S and Zavartsev Y 2002 Opt. Commun. 205 361
[21] Qian J, Zhang T, Guo S and Hu F 1992 Chinese Journal of Quantum Electronics 9 351 (in Chinese)
[22] Tan Y and Zhang S 2009 J. Phys. B: At. Mol. Opt. Phys. 89 339
[23] Zhang S L, Liu G, Zhu J and Li Y 2004 Prog. Natural Sci. 14 273 (in Chinese)
[24] Tan Y, Zhang S, Wan X and Cheng X 2006 Chin. Phys. 15 2934
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[4] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[5] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[6] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[7] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[8] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[9] Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
Yunjie Shi(石云杰), Lei Xiong(熊磊), Yuming Dong(董玉明), Degui Sun(孙德贵), and Guangyuan Li(李光元). Chin. Phys. B, 2022, 31(1): 014217.
[10] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[11] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[12] All-fiber laser seeded femtosecond Yb:KGW solid state regenerative amplifier
Renchong Lv(吕仁冲), Hao Teng(滕浩), Jiajun Song(宋贾俊), Renzhu Kang(康仁铸), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(9): 094206.
[13] A 37 mJ, 100 Hz, high energy single frequency oscillator
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦). Chin. Phys. B, 2021, 30(8): 084208.
[14] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[15] Solar energy full-spectrum perfect absorption and efficient photo-thermal generation
Zhefu Liao(廖喆夫), Zhengqi Liu(刘正奇), Qizhao Wu(吴起兆), Xiaoshan Liu(刘晓山), Xuefeng Zhan(詹学峰), Gaorong Zeng(曾高荣), and Guiqiang Liu(刘桂强). Chin. Phys. B, 2021, 30(8): 084206.
No Suggested Reading articles found!