Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080516    DOI: 10.1088/1674-1056/19/8/080516
GENERAL Prev   Next  

Relaxation theory of spin-3/2 Ising system near phase transition temperatures

Osman Canko, Mustafa Keskin
Department of Physics, Erciyes University, 38039 Kayseri, Turkey
Abstract  Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement.
Keywords:  spin-3/2 Ising system      Onsager theory  
Received:  28 September 2009      Revised:  07 November 2009      Published:  15 August 2010
PACS:  75.10.Hk (Classical spin models)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  75.40.Gb (Dynamic properties?)  
Fund: Project supported by the Erciyes University Research Funds (Grand No. FBT-03-09).

Cite this article: 

Osman Canko, Mustafa Keskin Relaxation theory of spin-3/2 Ising system near phase transition temperatures 2010 Chin. Phys. B 19 080516

[1] Sivardière J and Blume M 1972 Phys. Rev. B 5 1126
[2] Krinsky S and Mukamel D 1975 Phys. Rev. B 11 399
[3] Blume M, Emery V J and Griffiths R B 1971 Phys. Rev. A 4 1071
[4] S'a Barreto F C and De Alcantara Bonfim O F 1991 Physica A 172 378
[5] Tucker J W 2000 J. Magn. Magn. Mater. 214 121
[6] Bakchich A and El Bouziani M 2001 J. Phys.: Condens. Matter 13 91
[7] Albayrak E 2002 Phys. Rev. B 65 134429
[8] Albayrak E and Keskin M 2002 J. Magn. Magn. Mater. 241 249, and references therein
[9] Ekiz C, Albayrak E and Keskin M 2003 J. Magn. Magn. Mater. 256 311
[10] Keskin M, Phinar M A, Erdincc A and Canko O 2006 Physica A 364 263
[11] Canko O and Keskin M 2003 Phys. Lett. A 320 22
[12] Blume M 1966 Phys. Rev. 141 517
[13] Capel H W 1966 Physica (Utr) 32 966
[14] Xavier J C, Alcaraz F C, Pen a Lara D and Plascak J A 1998 Phys. Rev. B 57 11 575
[15] Plascak J A and Landau D P 2003 Phys. Rev. E 67 15103(R)
[16] Grollau S 2002 Phys. Rev. E 65 56130, and references therein
[17] Özsoy O, Albayrak E and Keskin M 2002 Physica A 304 443
[18] Ekiz C 2004 J. Magn. Magn. Mater. 284 409
[19] Grandi B C S and Figueiredo W 2004 Phys. Rev. E 70 056109
[20] Keskin M, Canko O and Deviren B 2006 Phys. Rev. E 74 011110
[21] Keskin M, Canko O and Khirak M 2007 J. Stat. Phys. 127 359
[22] Canko O, Deviren B and Keskin M 2006 J. Phys.: Condens. Matter 18 6635
[23] Keskin M, Deviren B, Canko O and Khirak M 2007 Acta Phys. Polonica B 38 2445
[24] Keskin M, Canko O and Deviren B 2007 J. Magn. Magn. Mater. 313 L1
[25] Canko O and Keskin M 2006 Physica A 363 315
[26] Keskin M and Canko O 2008 J. Magn. Magn. Mater. 320 8
[27] Keskin M and Canko O 2005 Phys. Lett. A 348 9
[28] Onsager L 1931 Phys. Rev. 37 405
[29] Onsager L 1931 Phys. Rev. 38 2265
[30] Tanaka T, Meijer P H E and Barry J H 1962 J. Chem. Phys. 37 1397
[31] Barry J H 1966 J. Chem. Phys. 45 4172
[32] Barry J H and Harrington D A 1971 Phys. Rev. B 4 3068
[33] Erdem R and Keskin M 2001 Phys. Stat. Sol. (b) 225 145
[34] Erdem R and Keskin M 2001 Phys. Rev. E 64 026102
[35] Keskin M and Erdem R 2002 Phys. Lett. A 297 427
[36] Keskin M and Erdem R 2003 J. Chem. Phys. 118 5947
[37] Erdem R and Keskin M 2001 Phys. Lett. A 291 159
[38] Erdem R and Keskin M 2004 Phys. Lett. A 326 27
[39] Erdem R and Keskin M 2003 Phys. Lett. A 310 74
[40] Erdem R, Ekiz C and Keskin M 2003 Phys. Stat. Sol. (b) 240 220
[41] Gulpinar G, Demirhan D and Buyukkilic F 2007 Phys. Rev. E 75 021104
[42] Lei X W and Zheng B 2007 Phys. Rev. E 75 040104
[43] Nogawa T and Nemoto K 2006 Phys. Rev. B 73 184504
[44] Atsarkin V A, Demidov V V, Vasneva G A and Conder K 2001 Phys. Rev. B 63 092405
[45] Etzkorn S J, Hibbs W, Miller J S and Epstein A J 2004 Phys. Rev. B 70 134419
[46] Inoue H and Yonemitsu K 2007 Phys. Rev. B 75 235125
[47] Kim E, Lee S J and Kim B 2007 Phys. Rev. E 75 021106
[48] Bhowmik R N and Ranganathan R 2007 Phys. Rev. B 75 012410
[49] Bonati C, Cannizzo A, Tonti D, Tortschanoff A, van Mourik F and Chergui M 2007 Phys. Rev. B 76 033304
[50] Özsoy O and Keskin M 2003 Physica A 319 404
[51] Canko O and Keskin M 2006 Int. J. Mod. Phys. B 20 455
[52] Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435
[53] Kawasaki K 1971 Phys. Rev. A 3 1097
[54] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (New York: Oxford University Press)
[55] Ray T S, Tamayo P and Klein W 1989 Phys. Rev. A 39 5949
[56] Crisanti A and Ritort F 2003 J. Phys. A: Math. Gen. 36 R181
[57] Pathria R K 1996 Statistical Mechanics (Oxford: Pergamon)
[58] Belanger D P, Farago B, Jaccarino V, King A R, Lartigue C and Mezei F 1988 J. Phys. (Paris) Colloq. 49 C8-1229
[59] Rosov N, Hohenemser C and Eibschütz M 1992 Phys. Rev. B 46 3452
[60] Kohno H and Yao M 2002 J. Phys.: Condens. Matter 14 L171
[61] Grassberger P 1995 Physica A 214 547 (Erratum 1995 217 227(E))
[62] Ivaneyko D, Ilnytskyi J, Berche B and Holovatch Yu 2006 Physica A 370 163
[63] Prudnikov V V, Ivanov A V and Fedorenko A A 1997 J. Exp. Theor. Phys. Lett. 66 835 (1997 Zh. Eksp. Teor. Fiz. 66 793)
[64] Blavatśka V, Dudka M, Folk R and Holovatch Yu 2005 Phys. Rev. B 72 064417
[65] Prudnikov V V and Vakilov A N 1992 J. Exp. Theor. Phys. Lett. 55 741 (1992 Zh. Eksp. Teor. Fiz. 55 709)
[66] Wang F G and Hu C K 1997 Phys. Rev. E 56 2310
[67] Wang J S 1992 Computer Simulation Studies in Condensed Matter Physics: XI ed. Landau D P, Mon K K and Schüttler H B (Heiderberg: Springer) p. 125
[68] Murase Y 2007 Master Thesis, The University of Tokyo
[69] Ozeki Y and Ito N 2007 J. Phys. A: Math. Theor. 40 R149
[70] Miyashita S and Takano H 1985 Prog. Theor. Phys. 73 1122
[71] Ito N 1993 Physica A 196 591
[72] Nightingale M P and Blöte H W J 1996 Phys. Rev. Lett. 76 4548
[73] Wang F G, Hatano N and Suziki M 1995 J. Phys. A 28 4543
[74] Pleimling M and Igl'oi 2007 EPL 79 56002
[1] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[2] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[3] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[4] Phase transitions of the five-state clock model on the square lattice
Yong Chen(陈勇), Zhi-Yuan Xie(谢志远), Ji-Feng Yu(余继锋). Chin. Phys. B, 2018, 27(8): 080503.
[5] Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin Kantar. Chin. Phys. B, 2015, 24(10): 107501.
[6] Antiferromagnetism and Kondo screening on a honeycomb lattice
Lin Heng-Fu, Tao Hong-Shuai, Guo Wen-Xiang, Liu Wu-Ming. Chin. Phys. B, 2015, 24(5): 057101.
[7] Magnetic field control of ferroelectric polarization and magnetization of LiCu2O2 compound
Qi Yan, Du An. Chin. Phys. B, 2014, 23(8): 087502.
[8] Nonequilibrium behavior of the kinetic metamagnetic spin-5/2 Blume-Capel model
Ümüt Temizer. Chin. Phys. B, 2014, 23(7): 070511.
[9] Monte Carlo study of the magnetic properties of spin liquid compound NiGa2S4
Zhang Kai-Cheng, Li Yong-Feng, Liu Yong, Chi Feng. Chin. Phys. B, 2014, 23(5): 057501.
[10] Dynamic magnetic behavior of the mixed spin (2, 5/2) Ising system with antiferromagnetic/antiferromagnetic interactions on a bilayer square lattice
Mehmet Ertaş, Mustafa Keskin. Chin. Phys. B, 2013, 22(12): 120507.
[11] Phase transition in a two-dimensional Ising ferromagnet based on the generalized zero-temperature Glauber dynamics
Meng Qing-Kuan, Feng Dong-Tai, Gao Xu-Tuan, Mei Yu-Xue. Chin. Phys. B, 2013, 22(12): 127501.
[12] Simulation of the magnetoresistance of Heisenberg spin lattices using the resistor–network model
Lin Ling-Fang, Huang Xin, Dong Shuai. Chin. Phys. B, 2013, 22(11): 117313.
[13] Phase diagrams of spin-3/2 Ising model in the presence of random crystal field within the effective field theory based on two approximations
Ali Yigit, Erhan Albayrak. Chin. Phys. B, 2013, 22(10): 100508.
[14] Comment on ‘Mathematical structure of the three-dimensional (3D)Ising model’
Jacques H. H. Perk. Chin. Phys. B, 2013, 22(8): 080508.
[15] The propagation of shape changing soliton in a nonuniform nonlocal media
L. Kavitha, C. Lavanya, S. Dhamayanthi, N. Akila, D. Gopi. Chin. Phys. B, 2013, 22(8): 084209.
No Suggested Reading articles found!