Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080503    DOI: 10.1088/1674-1056/19/8/080503
GENERAL Prev   Next  

Simulation study of the effects of time delay on the correlation function of a bistable system with correlated noises

Du Lu-Chun(杜鲁春)a), Dai Zu-Cheng(戴祖诚)b), and Mei Dong-Cheng(梅冬成) a)†
a Department of Physics, Yunnan University, Kunming 650091, China; b Department of Physics, Kunming Univertity, Kunming 650031, China
Abstract  The effects of time delay on the fluctuation properties of a bistable system are investigated by simulating its normalised correlation function C(s). Three cases including linear delay, cubic delay and global delay in the system are considered respectively. The simulation results indicate that the linear delay enhances the fluctuation of the system (reduces the stability of the system) while the cubic delay and global delay weaken it (enforce the stability of the system), and the effect of cubic delay is more pronounced than the linear delay and global delay.
Keywords:  bistable system      time delay      correlation function  
Received:  01 February 2010      Revised:  02 March 2010      Accepted manuscript online: 
PACS:  05.40.Ca (Noise)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10865006), the Science Foundation of Yunnan University (Grant No. 2009A01z), and the Graduate Science Foundation of Yunnan University (Grant No. ynuy200926).

Cite this article: 

Du Lu-Chun(杜鲁春), Dai Zu-Cheng(戴祖诚), and Mei Dong-Cheng(梅冬成) Simulation study of the effects of time delay on the correlation function of a bistable system with correlated noises 2010 Chin. Phys. B 19 080503

[1] Sancho J M, San Miguel M, Katz S L and Gunton J D 1982 Phys. Rev. A 26 1589
[2] Mei D C, Xie C W and Xiang Y L 2004 Physica A 343 167
[3] Mei D C, Xiang Y L and Xie C W 2006 Phys. Scr. 74 123
[4] Du L C and Mei D C 2008 Phys. Lett. A 372 5529
[5] Long F, Du L C and Mei D C 2009 Phys. Scr. 79 045007
[6] Desp'osito M A and Vi nales A D 2009 Phys. Rev. E 80 021111
[7] Fujisaka H and Grossmann S 1981 Z. Phys. B: Cond. Matter 43 69
[8] Hern'andez-Machado A, San Migeul M and Sancho J M 1984 Phys. Rev. A 29 3388
[9] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775
[10] Tsimring L S and Pikovsky A S 2001 Phys. Rev. Lett. 87 250602
[11] Huber D and Tsimring L S 2003 Phys. Rev. Lett. 91 260601
[12] Piwonski T, Houlihan J, Busch T and Huyet G 2005 Phys. Rev. Lett. 95 040601
[13] Kim S, Park S H and Pyo H B 1999 Phys. Rev. Lett. 82 1620
[14] Ohira T and Sato Y 1999 Phys. Rev. Lett. 82 2811
[15] Du L C and Mei D C 2009 Chin. Phys. B 18 946
[16] Stephen Yeung M K and Strogatz S H 1999 Phys. Rev. Lett. 82 648
[17] Wu D and Zhu S Q 2007 Phys. Lett. A 363 202
[18] Du L C and Mei D C 2008 J. Stat. Mech. 11 P11020
[19] Wu D, Zhu S Q and Luo X Q 2009 Europhys. Lett. 86 50002
[20] Mei D C, Du L C and Wang C J 2009 J. Stat. Phys. 137 625
[21] Jia Z L 2010 Chin. Phys. B 19 020504
[22] Nie L R and Mei D C 2007 Europhys. Lett. 79 20005
[23] Nie L R and Mei D C 2008 Phys. Rev. E 77 031107
[24] Gu X, Zhu S Q and Wu D 2007 Eur. Phys. J. D 42 461
[25] Du L C and Mei D C 2010 Physica A 389 1189
[26] Han L B 2008 Acta Phys. Sin. 57 2699 (in Chinese)
[27] Long F, Du L C and Mei D C 2009 Chin. Phys. B 18 4738
[28] Frank T D 2002 Phys. Rev. E 66 011914
[29] Hasegawa H 2004 Phys. Rev. E 70 021911
[30] Frank T D 2005 Phys. Rev. E 71 031106
[31] Frank T D 2005 Phys. Rev. E 72 011112
[32] Pomplum J, Balanov A G and Sch"oll E 2007 Phys. Rev. E 75 040101(R)
[33] Kim M Y, Roy R, Aron J L, Carr T W and Schwartz I B 2005 Phys. Rev. Lett. 94 088101
[34] Gu X, Zhu S Q and Wu D 2007 Commun. Theor. Phys. 48 1055
[35] Gu X and Zhu S Q 2010 Eur. Phys. J. D 56 215
[36] Guillouzic S, LHeureux I and Longtin A 2000 Phys. Rev. E 61 4906
[37] Li J C and Mei D C 2008 Acta Phys. Sin. 57 6792 (in Chinese)
[38] Lin L, Yan Y and Mei D C 2010 Acta Phys. Sin. 59 2240 (in Chinese)
[39] Zhu S Q 1993 Phys. Rev. A 47 2405
[40] Xiang Y L and Mei D C 2010 Chin. Phys. B 19 010501
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[4] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[5] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[6] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[7] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[8] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[9] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[10] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[11] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[12] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[13] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[14] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[15] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
No Suggested Reading articles found!