Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 066101    DOI: 10.1088/1674-1056/19/6/066101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Direct transition of potential of water droplets to electric energy using aligned single-walled carbon nanotubes

Zheng Kai-Honga, Hu Li-Juna, Sun Lian-Fenga, Liu Jib, Liu Zhengb
a National Center for Nanoscience and Technology, Beijing 100190, China; b National Center for Nanoscience and Technology, Beijing 100190, China;Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  In this paper, we report that an electromotive force (EMF) can be induced in a rope of aligned single-walled carbon nanotubes (SWNTs) when water droplets fall on this rope. The magnitude of this EMF depends sensitively on the slant angle of the SWNTs. Most interestingly, both the magnitude and the direction of the induced EFM can be modulated by applying a current to the SWNTs. The concepts of electrical slip and no-slip are proposed and can be quantitatively described by ``electrical slip resistance''. This kind of generator does not need any magnet, rotor, {etc} and shows quite a different operating mechanism and design compared with a conventional large scale hydroelectric power generator.
Keywords:  water      energy conversion      single-walled carbon nanotube     
Received:  19 October 2009      Published:  15 June 2010
PACS:  85.35.Kt (Nanotube devices)  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  84.60.-h (Direct energy conversion and storage)  
Fund: Project supported by the National Basic Research Program of China (Grant No.~2006CB932402) and the National Natural Science Foundation of China (Grant Nos.~50702015, 10574034, and 10774032).

Cite this article: 

Liu Ji, Zheng Kai-Hong, Liu Zheng, Hu Li-Jun, Sun Lian-Feng Direct transition of potential of water droplets to electric energy using aligned single-walled carbon nanotubes 2010 Chin. Phys. B 19 066101

[1] Paradiso J A and Starner T 2005 Pervasive Comput. 4 18
[2] Yang R S, Qin Y, Dai L M and Wang Z L 2009 Nat. Nanotechnol . 4 34
[3] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L and Liber C M 2007 Nature 449 885
[4] Wang Z L and Song J H 2006 Science 312 242
[5] Wang X D, Song J H, Liu J and Wang Z L 2007 Science 316 102
[6] Qin Y, Wang X D and Wang Z L 2008 Nature 451 809
[7] Wang Y, Ni X G, Wang X X and Wu H A 2003 Chin. Phys. 12 1007
[8] Zhang Y, Cao J X and Yang W 2008 Chin. Phys. B 17 1881
[9] Ebbesen T W, Lezec H J, Hiura H, Bennet J W, Ghaemi H F and Thio T 1996 Nature 382 54
[10] Zhou X Y and Lu H J 2007 Chin. Phys. 16 335
[11] Chesnokov S A, Nalimova V A, Rinzler A G, Smally R E and Fischer J E 1999 Phys. Rev. Lett. 82 343
[12] Kral P and Shapiro M 2001 Phys. Rev. Lett. 86 131
[13] Ghosh S, Sood A K and Kumar N 2003 Science 299 1042
[14] Ghosh S, Sood A K, Ramaswamy S and Kumar N 2004 Phys. Rev. B 70 205423
[15] Sood A K and Ghosh S 2004 Phys. Rev. Lett. 93 086601
[16] Liu J W and Dai L M 2007 J. Appl. Phys. 101 064312
[17] Cohen A E 2003 Science 300 1235
[18] Ghosh S, Sood A K and Kumar N 2003 Science 300 1235
[19] Persson B N J, Tartaglino U, Tosatti E and Ueba H 2004 Phys. Rev. B 69 235410
[20] Zhao Y C, Song L, Deng K, Liu Z, Zhang Z X, Yang Y L, Wang C, Yang H F, Jin A Z, Luo Q, Gu C Z, Xie S S and Sun L F 2008 Adv. Mater. 20 1772
[21] Liu G T, Zhao Y C, Deng K, Liu Z, Chu W G, Chen J R, Yang Y L, Zheng K H, Huang H B, Ma W J, Song L, Yang H F, Gu C Z, Wang C, Xie S S and Sun L F 2008 Nano Lett. 8 1071
[22] Thompson P A and Troian S M 1997 Nature 389 360
[23] Majumder M, Chopra N, Andrews R and Hinds J 2005 Nature 438 44
[24] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[25] Xu Z, Bai X D, Wang E G and Wang Z L 2005 Appl. Phys. Lett. 87 163106
[26] Collins P G, Bradley K, Ishigami M and Zettl A 2000 Science 287 1801
[1] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[2] Evaporation of nanoscale water on solid surfaces
Rongzheng Wan(万荣正)1,† and Haiping Fang(方海平)1,2. Chin. Phys. B, 2020, 29(12): 126601.
[3] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista, and Li-Mei Xu(徐莉梅). Chin. Phys. B, 2020, 29(11): 114703.
[4] Water on surfaces from first-principles molecular dynamics
Peiwei You(游佩桅), Jiyu Xu(徐纪玉), Cui Zhang(张萃), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(11): 116804.
[5] Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation
Ming Song(宋明), Beidan Wang(王贝丹), Jun Cao(曹军). Chin. Phys. B, 2020, 29(10): 100206.
[6] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[7] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[8] Investigation of copper sulfate pentahydrate dehydration by terahertz time-domain spectroscopy
Yuan-Yuan Ma(马媛媛), Hao-Chong Huang(黄昊翀), Si-Bo Hao(郝思博), Wei-Chong Tang(汤伟冲), Zhi-Yuan Zheng(郑志远), Zi-Li Zhang(张自力). Chin. Phys. B, 2019, 28(6): 060702.
[9] The universal characteristic water content of aqueous solutions
Xiao Huang(黄晓), Ze-Xian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2019, 28(6): 065101.
[10] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[11] A revised jump-diffusion and rotation-diffusion model
Hua Li(李华), Yu-Hang Chen(陈昱沆), Bin-Ze Tang(唐宾泽). Chin. Phys. B, 2019, 28(5): 056105.
[12] Ultra-high-density local structure in liquid water
Cheng Yang(杨成), Chuanbiao Zhang(张传彪), Fangfu Ye(叶方富), Xin Zhou(周昕). Chin. Phys. B, 2019, 28(11): 116104.
[13] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
[14] Effects of rough surface on sound propagation in shallow water
Ruo-Yun Liu(刘若芸), Zheng-Lin Li(李整林). Chin. Phys. B, 2019, 28(1): 014302.
[15] Cavity formation during water entry of heated spheres
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(9): 094703.
No Suggested Reading articles found!