Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 050517    DOI: 10.1088/1674-1056/19/5/050517
GENERAL Prev   Next  

Effects of the number of on-rampson the ring traffic flow

Tang Tie-Qiao(唐铁桥)a)b)†, Huang Hai-Jun(黄海军)b), and Shang Hua-Yan(尚华艳) c)
a School of Transportation Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China; b School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100191, China; c Institute of Transportation Engineering, Tsinghua University, Beijing 100084, China
Abstract  Since ramp is an important composition of traffic system and there often exist multi ramps in a traffic system, the number of ramps can have great effects on main road traffic and produce some complex phenomena. In this paper, we employ the model presented by Tang et al. [2009 Communications in Theoretical Physics  51 (1) 71] to further study the effects of the number of on-ramps on the stability of traffic flow on a ring road. The numerical results show that this model can reproduce some complex traffic phenomena resulting from multi on-ramps on the ring road and the effects of the number of on-ramps on traffic flow, but the phenomena and the effects are both related to the initial density of the main road.
Keywords:  traffic flow      on-ramp      stability  
Received:  21 September 2009      Revised:  27 September 2009      Accepted manuscript online: 
PACS:  89.40.Bb (Land transportation)  
  02.60.-x (Numerical approximation and analysis)  
Fund: Project supported by the Program for New Century Excellent Talents in University, China (Grant No.~NCET-08-0038), the National Natural Science Foundation of China (Grant Nos.~70701002, 70971007 and 70521001), and the National Basic Research Program of China (Grant No.~2006CB705503).

Cite this article: 

Tang Tie-Qiao(唐铁桥), Huang Hai-Jun(黄海军), and Shang Hua-Yan(尚华艳) Effects of the number of on-rampson the ring traffic flow 2010 Chin. Phys. B 19 050517

[1] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[2] Lee H Y, Lee H W and Kim D 2001 Physica A 281 78
[3] Jiang R, Wu Q S and Zhu Z J 2002 Transp. Res. B 36 405
[4] Gupta A K and Kitiyar V K 2006 Physica A 371 674
[5] Huang H J, Tang T Q and Gao Z Y 2006 Acta Mechanic Sin. 22 132
[6] Tang C F, Jiang R and Wu Q S 2007 Chin. Phys. 16 1570
[7] Wang J F, Chen G S and Liu J 2008 Chin. Phys. B 17 2850
[8] Peng G H, Sun D H and He H P 2009 Chin. Phys. B 18 468
[9] Sun D H and Peng G H 2009 Chin. Phys. B 18 3724
[10] Sheng P, Zhao S L, Wang J F, Tang P and Gao L 2009 Chin. Phys. B 18 3347
[11] Zhao J Y, Sun X M and Jia L 2006 Acta Phys. Sin. 55 2306 (in Chinese)
[12] Tang T Q, Huang H J and Xue Y 2006 Acta Phys. Sin. 55 4026 (in Chinese)
[13] Han X L, Jiang C Y, Ge H X and Dai S Q 2007 Acta Phys. Sin. 56 4383 (in Chinese)
[14] Tang T Q, Huang H J, Xu G and Xue Y 2008 Acta Phys. Sin. 57 56 (in Chinese)
[15] Tang C F, Jiang R and Wu Q S 2007 Physica A 377 641
[16] Jiang R, Hu M B, Jia B, Wang R L and Wu Q S 2007 Phys. Lett. A 365 6
[17] Huang D W 2006 Phys. Rev. E 73 016123
[18] Davis L C 2007 Physica A 379 274
[19] Kerner B S and Klenov S L 2006 J. Phys. A 39 1775
[20] Li F, Zhang X Y and Gao Z Y 2007 Physica A 374 827
[21] Jiang R, Hu M B, Jia B, Wang R L and Wu Q S 2008 Transportmetrica 4 51
[22] Zhuang Q, Jia B and Li X G 2009 Chin. Phys. B 18 3271
[23] Teng Y F, Gao Z Y, Jia B and Li F 2008 Acta Phys. Sin. 57 1635 (in Chinese)
[24] Lei L, Dong L Y and Ge H X 2007 Acta Phys. Sin. 56 6874 (in Chinese)
[25] Mei C Q, Huang H J and Tang T Q 2008 Acta Phys. Sin. 57 4786 (in Chinese)
[26] Mei C Q, Huang H J and Tang T Q 2009 Acta Phys. Sin. 58 3014 (in Chinese)
[27] Li S C, Kong L J, Liu M R and Zheng R S 2009 Acta Phys. Sin. 58 2276 (in Chinese)
[28] Tang T Q, Huang H J, Wong S C, Gao Z Y and Zhang Y 2009 Commu. in Theor. Phys. 51 71
[29] Liu G Q, Lyrintzis A S and Michalopoulos P G 1996 Appl. Math. Modeling 20 459
[30] Tang T Q, Huang H J, Xu G and Zhang Y 2008 Europhysics Letters 84 14006
[31] Tang T Q, Huang H J, Zhang Y and Xu X Y 2008 Int. J. Mod. Phys. C 19 1367
[32] Zhang P and Wong S C 2006 Phys. Rev. E 74 026109
[33] Kerner B S and Konh\"{auser P 1993 Phys. Rev. E 48 R2335
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[9] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[10] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[11] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[12] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[13] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
No Suggested Reading articles found!