Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 040510    DOI: 10.1088/1674-1056/19/4/040510
GENERAL Prev   Next  

Traffic flow of a roundabout crossing with an open boundary condition

Bai Ke-Zhao(白克钊),Tan Hui-Li(谭惠丽), Kong Ling-Jiang(孔令江), and Liu Mu-Ren(刘慕仁)
College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China
Abstract  This paper presents a cellular automaton traffic flow model with an open boundary condition to describe the traffic flow at a roundabout crossing with an inner roundabout lane and an outer roundabout lane. The simulation results show that the boundary condition, bottlenecks and the self-organization affect the traffic flow at the roundabout crossing. Because of the effect of bottlenecks, jams easily appear on the inner roundabout lane. To improve the capacity of the roundabout system, proper values of the enter probability α and the out probability $\beta $ can be chosen.
Keywords:  roundabout crossing      cellular automaton model      bottleneck      traffic flow  
Received:  15 June 2009      Revised:  20 July 2009      Accepted manuscript online: 
PACS:  05.65.+b (Self-organized systems)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  02.50.Cw (Probability theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10562001, 10762005 and 10962002).

Cite this article: 

Bai Ke-Zhao(白克钊),Tan Hui-Li(谭惠丽), Kong Ling-Jiang(孔令江), and Liu Mu-Ren(刘慕仁) Traffic flow of a roundabout crossing with an open boundary condition 2010 Chin. Phys. B 19 040510

[1] Helbing D 2001 Rev. Mod. Phys. 73 1067
[2] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[3] Tan H L, Huang P H, Li H B, Liu M R and Kong L J 2003 Acta Phys. Sin. 52 1127 (in Chinese)
[4] Huang P H, Kong L J and Liu M R 2002 Chin. Phys. 11 678
[5] Xue Y 2002 Chin. Phys. 11 1128
[6] Wang R, Liu M and Jiang R 2008 Phys. Rev. E 77 051108
[7] Sven M and Bart D M 2005 Phys. Rep. 408 1067
[8] Mei C Q, Huang H J and Tang T Q 2008 Acta Phys. Sin. 57 4786 (in Chinese)
[9] Li X G, Gao Z Y, Zhao X M and Jia B 2008 Acta Phys. Sin. 57 4777 (in Chinese)
[10] Li X L, Kuang H, Song T, Dai S Q and Li Z P 2008 Chin. Phys. B 17 2366
[11] Fouladv M E, Sadjadi Z and Shaebani M R 2004 Phys. Rev. E 70 046132
[12] Wang R and Ruskin H J 2002 Compt. Phys. Comm. 147 570
[13] Wang R and Ruskin H J 2006 Int. J. Mod. Phys. C 17 693
[14] Chen R X, Bai K Z and Liu M R 2006 Chin. Phys. 15 1471
[15] Nagel K and Schrenckenberg M 1992 J. Phys. I 2 2221 (in France)
[16] Jang R, Wu Q S and Wang B H 2002 Phys. Rev. E 66 036104
[17] Joachim K 1991 Phys. Rev. Lett. 67 1882
[18] Cheybani S, Kertesz J and Schrenckenberg M 2001 Phys. Rev. E 63 016107
[19] Kerner B S 2004 Physica A 333 379
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[4] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[5] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[6] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[7] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[8] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[9] Influence of bottleneck on single-file pedestrian flow: Findings from two experiments
Cheng-Jie Jin(金诚杰), Rui Jiang(姜锐), Da-Wei Li(李大韦). Chin. Phys. B, 2020, 29(8): 088902.
[10] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[11] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[12] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[13] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[14] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[15] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
No Suggested Reading articles found!