Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037104    DOI: 10.1088/1674-1056/19/3/037104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic transport properties of an (8,0) carbon/boron nitride nanotube heterojunction

Zhang Zhi-Yonga, Liu Hong-Xiab, Zhang He-Mingb, Song Jiu-Xub
a Information Science and Technology Institution, Northwest University, Xi'an 710069, China; b Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The structure of a heterojunction made up of an (8, 0) carbon nanotube and an (8, 0) boron nitride nanotube is achieved through geometry optimization implemented in the CASTEP package. Based on the optimized geometry, the model of the heterojunction is established. Its transport properties are investigated by combining the nonequilibrium Green's function with density functional theory. Results show that both the lowest unoccupied molecular orbital and the highest occupied molecular orbital mainly locate on the carbon nanotube section. In the current--voltage characteristic of the heterojunction, a rectification feature is revealed.
Keywords:  nanotube heterojunction      nonequilibrium Green's function      transport properties     
Received:  15 March 2009      Published:  15 March 2010
PACS:  73.63.Fg (Nanotubes)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.40.Ei (Rectification)  
Fund: Project supported by the Chinese Defence Advance Research Program of Science and Technology, China (Grant No.~9140A08060407DZ0103).

Cite this article: 

Liu Hong-Xia, Zhang He-Ming, Song Jiu-Xu, Zhang Zhi-Yong Electronic transport properties of an (8,0) carbon/boron nitride nanotube heterojunction 2010 Chin. Phys. B 19 037104

[1] Iijima S 1991 Nature 354 56
[2] Huczko A, Bystrzejewski M, Lange H, Fabianowska A, Cudzilo S, Panas Aand Szala M 2005 J. Phys. Chem. B 109 16244
[3] Lourie O R, Jones C R, Bartlett B M, Gibbons P C, Ruoff R S and Buhro WE 2000 Chem. Mater. 12 1808
[4] Ciuparu D, Klie R F, Zhu Y M and Pfefferle L 2004 J. Phys. Chem. B 108 3967
[5] Bechelany M, Bernard S, Brioude A, Cornu D, Stadelmann P, Charcosset C,Fiaty K and Miele P 2007 J. Phys. Chem. C 111 13378
[6] Moradian R, Azadi S and Farahani S V 2008 Phys. Lett. A 372 6935
[7] Chai Y, Zhou X L, Li P J, Zhang W J, Zhang Q F and Wu J L 2005 Nanotechnology 16 2134
[8] Li Z Y and Kosov D S 2006 J. Phys. Chem. B 110 9893
[9] Chen J Z, Zhang J and Han R S 2008 Chin. Phys. B 17 2208
[1] Niu X M and Qi H Y 2008 Acta Phys. Sin. 57 6926 (in Chinese)
[11] Long M Q, Chen K Q, Wang L L and Zou B S 2007 Appl. Phys. Lett.91 233512
[12] Li X F, Chen K Q, Wang L L, Long M Q and Zou B S 2007 Appl. Phys. Lett. 91 133511
[13] Bai P, Li E, Lam K T, Kurniawan O and Koh W S 2008 Nanotechnology 19 115203
[14] Tzolov M, Chang B, Yin A, Straus D, Xu J M and Brown G 2004 Phys.Rev. Lett.92 075505
[15] Thesing L A, Piquini P and Kar T 2006 Nanotechnology 17 1637
[16] Wei J W, Hu H F, Zeng H, Zhou Z P, Yang W W and Peng P 2008 Phys. E40 462
[17] Pan H, Feng Y P and Lin J Y 2006 Phys. Rev. B 73 035420
[18] Song C, Xia Y Y, Zhao M W, Liu X D, Li F and Huang B D2005 Chem. Phys. Lett.415 183
[19] Zhang J, Loh K P, Yang S W and Wu P 2005 Appl. Phys. Lett. 87 243
[20] Wang Z C, Kadohira T, Tada T and Watanabe S 2007 Nano. Lett. 7 2688
[1] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[2] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[3] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[4] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[5] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
[6] Non-monotonic dependence of current upon i-width in silicon p-i-n diodes
Zheng-Peng Pang(庞正鹏), Xin Wang(王欣), Jian Chen(陈健), Pan Yang(杨盼), Yang Zhang(张洋), Yong-Hui Tian(田永辉), Jian-Hong Yang(杨建红). Chin. Phys. B, 2018, 27(6): 066106.
[7] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[8] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[9] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
[10] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[11] Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices
Zhiyuan Ma(马志远), Ying Li(李莹), Xian-Jiang Song(宋贤江), Zhi Yang(杨致), Li-Chun Xu(徐利春), Ruiping Liu(刘瑞萍), Xuguang Liu(刘旭光), Dianyin Hu(胡殿印). Chin. Phys. B, 2017, 26(6): 067201.
[12] High pressure electrical transport behavior in SrF2 nanoplates
Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2017, 26(4): 046401.
[13] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[14] Carrier behavior of HgTe under high pressure revealed by Hall effect measurement
Hu Ting-Jing, Cui Xiao-Yan, Li Xue-Fei, Wang Jing-Shu, Lü Xiu-Mei, Wang Ling-Sheng, Yang Jing-Hai, Gao Chun-Xiao. Chin. Phys. B, 2015, 24(11): 116401.
[15] Transport properties of zigzag graphene nanoribbons adsorbed with single iron atom
Yang Yu-E, Xiao Yang, Yan Xiao-Hong, Dai Chang-Jie. Chin. Phys. B, 2015, 24(11): 117204.
No Suggested Reading articles found!