Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 020509    DOI: 10.1088/1674-1056/19/2/020509
GENERAL Prev   Next  

Controlling chaos to unstable periodic orbits and equilibrium state solutions for the coupled dynamos system

Wu Shu-Hua(吴淑花)a)b)†, Hao Jian-Hong(郝建红) a), and Xu Hai-Bo(许海波)c)
a School of Electric and Electronic Engineering, North China Electric Power University, Beijing 102206, China; b Department of Physics and Electrical Information Engineering, Shijiazhuang Normal College, Shijiazhuang 050035, China; c Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress chaos to unstable focuses and unstable periodic orbits. To overcome the topological limitation that the saddle-type steady state cannot be stabilized, an adaptive control based on LaSalle's invariance principle is used to control chaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). The control technique does not require any computer analysis of the system dynamics, and it operates without needing to know any explicit knowledge of the desired steady-state position.
Keywords:  coupled dynamos system      delayed feedback control      adaptive control      controlling chaos  
Received:  03 June 2009      Revised:  28 July 2009      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the Doctoral Foundation of North China Electric Power University (Grant No.~kH0433) and the International Science and Technology Cooperation Program (Grant No.~2007DFA71250).

Cite this article: 

Wu Shu-Hua(吴淑花), Hao Jian-Hong(郝建红), and Xu Hai-Bo(许海波) Controlling chaos to unstable periodic orbits and equilibrium state solutions for the coupled dynamos system 2010 Chin. Phys. B 19 020509

[1] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
[2] Braiman Y and Goldhirsch I 1991 Phys. Rev. Lett. 66 2545
[3] Rajasekar S 1995 Phys. Rev. E 51 775
[4] Ramesh M 1999 Chaos, Solitons & Fractals 10 1473
[5] Liu Z H and Chen S G 1997 Phys. Rev. E 56 168
[6] Liu Z H and Chen S G 1997 Phys. Lett. A 232 55
[7] Wang X Y and Wu X J 2006 Acta Phys. Sin. 55 5083 (in Chinese)
[8] Agiza H N 2002 Chaos, Solitons & Fractals 1 3 341
[9] Agiza H N 2004 Int. J. Mod. Phys. C 15 873
[10] Wang X Y 2003 Chaos in the Complex Nonlinearity System (Beijing: Electronics Industry Press) Chapt. 2 (inChinese)
[11] Pyragas K 1992 Phys. Lett. A 1 70 421
[12] Hu G, Xiao J H and Zheng Z G 2000 Chaos Control} (Shanghai: Shanghai Scientific andTechonological Education Publishing House) p. 34
[13] Just W, Bernard T, Ostheimer M, Reibold E and Benner H 1997 Phys. Rev. Lett. 78 203
[14] Nakajima H 1997 Phys. Lett. A 232 207
[15] Huang D B 2006 Phys. Rev. E 7 3 066204
[16] Pyragas K, Pyrags V, Kiss I Z and Hudson J L 2004 Phys. Rev. E 70 026215
[17] Braun D J 2008 Phys. Rev. E 78 016213
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[3] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[4] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[5] Cooperative adaptive bidirectional control of a train platoon for efficient utility and string stability
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Ning Bin (宁滨), Roberts Clive, Chen Lei (陈磊), Sun Xu-Bin (孙绪彬). Chin. Phys. B, 2015, 24(9): 090506.
[6] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
Wang Qiao (王乔), Ding Dong-Sheng (丁冬生), Qi Dong-Lian (齐冬莲). Chin. Phys. B, 2015, 24(6): 060508.
[7] Synchronization of coupled chaotic Hindmarsh Rose neurons: An adaptive approach
Wei Wei (魏伟). Chin. Phys. B, 2015, 24(10): 100503.
[8] Neural adaptive chaotic control with constrained input using state and output feedback
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Sun Xu-Bin (孙绪彬), Ning Bin (宁滨). Chin. Phys. B, 2015, 24(1): 010501.
[9] Static and adaptive feedback control for synchronization of different chaotic oscillators with mutually Lipschitz nonlinearities
Muhammad Riaz, Muhammad Rehan, Keum-Shik Hong, Muhammad Ashraf, Haroon Ur Rasheed. Chin. Phys. B, 2014, 23(11): 110502.
[10] Adaptive function projective synchronization of uncertain complex dynamical networks with disturbance
Wang Shu-Guo (王树国), Zheng Song (郑松). Chin. Phys. B, 2013, 22(7): 070503.
[11] Generalized projective synchronization of two coupled complex networks with different sizes
Li Ke-Zan (李科赞), He En (何恩), Zeng Zhao-Rong (曾朝蓉), Chi K. Tse (谢智刚). Chin. Phys. B, 2013, 22(7): 070504.
[12] Adaptive synchronization control of coupled chaotic neurons in the external electrical stimulation
Yu Hai-Tao (于海涛), Wang Jiang (王江), Deng Bin (邓斌), Wei Xi-Le (魏熙乐), Chen Ying-Yuan (陈颖源). Chin. Phys. B, 2013, 22(5): 058701.
[13] Adaptive control of bifurcation and chaos in a time-delayed system
Li Ning (李宁), Yuan Hui-Qun (袁惠群), Sun Hai-Yi (孙海义), Zhang Qing-Ling (张庆灵). Chin. Phys. B, 2013, 22(3): 030508.
[14] A single adaptive controller with one variable for synchronization of fractional-order chaotic systems
Zhang Ruo-Xun (张若洵), Yang Shi-Ping (杨世平). Chin. Phys. B, 2012, 21(8): 080505.
[15] Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping(杨世平) . Chin. Phys. B, 2012, 21(3): 030505.
No Suggested Reading articles found!